Skip to main content

Advertisement

Log in

Antigen-specific humoral responses against Helicobacter pylori in patients with systemic sclerosis

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Helicobacter pylori (Hp) is a likely trigger of systemic sclerosis (SSc), but systemic antigen-specific antibody (Ab) responses in a well-defined cohort of SSc patients have not been thoroughly assessed. Line immunoassay and immunoblotting testing Abs against 15 Hp antigens were performed in 91 SSc patients and 59 demographically matched healthy controls (HCs). Results were validated in an independent cohort of 35 SSc patients. Anti-Hp positivity was detected in 67% SSc patients vs 76.3% HCs. Among anti-Hp (+) individuals, anti-p67-FSH was less frequent in SSc than HCs (p = 0.016), whereas reactivity to the remaining 14 Hp antigens did not differ between patients and HCs. Anti-p67 Abs were less frequent in diffuse cutaneous SSc (dcSSc) compared with HCs (p = 0.018). Anti-p57 and anti-p33 Ab levels were lower in SSc vs HCs (p = 0.007 and p = 0.035, respectively). Anti-p57 and anti-p33 Ab levels were lower in limited cutaneous SSc (lcSSc) (p = 0.010) and dcSSc (p = 0.024), respectively, compared with HCs. Anti-p50 and anti-p17 Ab titers tended to be higher in dcSSc than in lcSSc. Sera from the independent SSc cohort showed comparable results. Anti-VacA Abs were more frequent in pulmonary arterial hypertension (p = 0.042), and anti-p30 Abs were more frequent in calcinosis (p = 0.007), whereas anti-VacA Ab levels were higher in lung fibrosis (p = 0.02). In conclusion, anti-Hp Abs are neither more frequent nor elevated in SSc compared with healthy population, the only exception being the higher frequency and levels of anti-VacA Abs in pulmonary hypertension and lung fibrosis, respectively. These results suggest that Hp is unlikely to be involved in the development of SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Domsic RT. Scleroderma: the role of serum autoantibodies in defining specific clinical phenotypes and organ system involvement. Curr Opin Rheumatol. 2014;26(6):646–52. https://doi.org/10.1097/BOR.0000000000000113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meier FM, Frommer KW, Dinser R, Walker UA, Czirjak L, Denton CP, et al. Update on the profile of the EUSTAR cohort: an analysis of the EULAR scleroderma trials and research group database. Ann Rheum Dis. 2012;71(8):1355–60. https://doi.org/10.1136/annrheumdis-2011-200742.

    Article  PubMed  Google Scholar 

  3. Sakkas LI, Chikanza IC, Platsoucas CD. Mechanisms of disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nat Clin Pract Rheumatol. 2006;2(12):679–85. https://doi.org/10.1038/ncprheum0346.

    Article  CAS  PubMed  Google Scholar 

  4. Manetti M, Romano E, Rosa I, Guiducci S, Bellando-Randone S, De Paulis A, et al. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann Rheum Dis. 2017;76(5):924–34. https://doi.org/10.1136/annrheumdis-2016-210229.

    Article  CAS  PubMed  Google Scholar 

  5. Mavropoulos A, Simopoulou T, Varna A, Liaskos C, Katsiari CG, Bogdanos DP, et al. Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheum. 2016;68(2):494–504. https://doi.org/10.1002/art.39437.

    Article  CAS  Google Scholar 

  6. Mendoza FA, Piera-Velazquez S, Farber JL, Feghali-Bostwick C, Jimenez SA. Endothelial cells expressing endothelial and mesenchymal cell gene products in lung tissue from patients with systemic sclerosis-associated interstitial lung disease. Arthritis Rheum. 2016;68(1):210–7. https://doi.org/10.1002/art.39421.

    Article  CAS  Google Scholar 

  7. Sakkas LI, Bogdanos DP. Systemic sclerosis: new evidence re-enforces the role of B cells. Autoimmun Rev. 2016;15(2):155–61. https://doi.org/10.1016/j.autrev.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  8. van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc pathophysiology; The Myofibroblast. Front Immunol. 2018;9:2452. https://doi.org/10.3389/fimmu.2018.02452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Sakkas L, et al. Tracing environmental markers of autoimmunity: introducing the infectome. Immunol Res. 2013;56(2–3):220–40. https://doi.org/10.1007/s12026-013-8399-6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bogdanos DP, Smyk DS, Rigopoulou EI, Sakkas LI, Shoenfeld Y. Infectomics and autoinfectomics: a tool to study infectious-induced autoimmunity. Lupus. 2015;24(4–5):364–73. https://doi.org/10.1177/0961203314559088.

    Article  CAS  PubMed  Google Scholar 

  11. Marie I, Gehanno JF. Environmental risk factors of systemic sclerosis. Semin Immunopathol. 2015;37(5):463–73. https://doi.org/10.1007/s00281-015-0507-3.

    Article  CAS  PubMed  Google Scholar 

  12. Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of systemic sclerosis. Front Immunol. 2015;6:272. https://doi.org/10.3389/fimmu.2015.00272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Efthymiou G, Dardiotis E, Liaskos C, Marou E, Scheper T, Meyer W, et al. A comprehensive analysis of antigen-specific antibody responses against human cytomegalovirus in patients with systemic sclerosis. Clin Immunol. 2019. https://doi.org/10.1016/j.clim.2019.07.012.

  14. Marou E, Liaskos C, Efthymiou G, Dardiotis E, Daponte A, Scheper T, et al. Increased immunoreactivity against human cytomegalovirus UL83 in systemic sclerosis. Clin Exp Rheumatol. 2017;35 Suppl 106(4):31–4.

    PubMed  Google Scholar 

  15. Marou E, Liaskos C, Simopoulou T, Efthymiou G, Dardiotis E, Katsiari C, et al. Human cytomegalovirus (HCMV) UL44 and UL57 specific antibody responses in anti-HCMV-positive patients with systemic sclerosis. Clin Rheumatol. 2017;36(4):863–9. https://doi.org/10.1007/s10067-017-3553-5.

    Article  PubMed  Google Scholar 

  16. Kountouras J, Zavos C, Gavalas E, Deretzi G, Katsinelos P, Boura P, et al. Helicobacter pylori may be a common denominator associated with systemic and multiple sclerosis. Joint, Bone, Spine. 2011;78(2):222–3; author reply 3. https://doi.org/10.1016/j.jbspin.2011.01.006.

    Article  PubMed  Google Scholar 

  17. Radic M, Kaliterna DM, Radic J. Helicobacter pylori infection and systemic sclerosis-is there a link? Joint, Bone, Spine. 2011;78(4):337–40. https://doi.org/10.1016/j.jbspin.2010.10.005.

    Article  PubMed  Google Scholar 

  18. Radic M, Kaliterna DM, Bonacin D, Vergles JM, Radic J, Fabijanic D, et al. Is Helicobacter pylori infection a risk factor for disease severity in systemic sclerosis? Rheumatol Int. 2013;33(11):2943–8. https://doi.org/10.1007/s00296-012-2585-z.

    Article  CAS  PubMed  Google Scholar 

  19. Yong WC, Upala S, Sanguankeo A. Helicobacter pylori infection in systemic sclerosis: a systematic review and meta-analysis of observational studies. Clin Exp Rheumatol. 2018;36 Suppl 113(4):168–74.

    PubMed  Google Scholar 

  20. Yamaguchi K, Iwakiri R, Hara M, Kikkawa A, Fujise T, Ootani H, et al. Reflux esophagitis and Helicobacter pylori infection in patients with scleroderma. Intern Med. 2008;47(18):1555–9. https://doi.org/10.2169/internalmedicine.47.1128.

    Article  PubMed  Google Scholar 

  21. Radic M, Martinovic Kaliterna D, Bonacin D, Morovic Vergles J, Radic J. Correlation between Helicobacter pylori infection and systemic sclerosis activity. Rheumatology. 2010;49(9):1784–5. https://doi.org/10.1093/rheumatology/keq137.

    Article  PubMed  Google Scholar 

  22. Farina G, Rosato E, Francia C, Proietti M, Donato G, Ammendolea C, et al. High incidence of Helicobacter pylori infection in patients with systemic sclerosis: association with Sicca syndrome. Int J Immunopathol Pharmacol. 2001;14(2):81–5.

    CAS  PubMed  Google Scholar 

  23. Yazawa N, Fujimoto M, Kikuchi K, Kubo M, Ihn H, Sato S, et al. High seroprevalence of Helicobacter pylori infection in patients with systemic sclerosis: association with esophageal involvement. J Rheumatol. 1998;25(4):650–3.

    CAS  PubMed  Google Scholar 

  24. Kalabay L, Fekete B, Czirjak L, Horvath L, Daha MR, Veres A, et al. Helicobacter pylori infection in connective tissue disorders is associated with high levels of antibodies to mycobacterial hsp65 but not to human hsp60. Helicobacter. 2002;7(4):250–6.

    Article  Google Scholar 

  25. Danese S, Zoli A, Cremonini F, Gasbarrini A. High prevalence of Helicobacter pylori type I virulent strains in patients with systemic sclerosis. J Rheumatol. 2000;27(6):1568–9.

    CAS  PubMed  Google Scholar 

  26. Bilgin H, Kocabas H, Kesli R. The prevalence of infectious agents in patients with systemic sclerosis. Turkish J Med Sci. 2015;45(6):1192–7.

    Article  CAS  Google Scholar 

  27. Showji Y, Nozawa R, Sato K, Suzuki H. Seroprevalence of Helicobacter pylori infection in patients with connective tissue diseases. Microbiol Immunol. 1996;40(7):499–503.

    Article  CAS  Google Scholar 

  28. Lachman LB, Ozpolat B, Rao XM, Graham DY, Osato M. Development of a murine model of Helicobacter pylori infection. Helicobacter. 1997;2(2):78–81.

    Article  CAS  Google Scholar 

  29. Marchetti M, Arico B, Burroni D, Figura N, Rappuoli R, Ghiara P. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science. 1995;267(5204):1655–8. https://doi.org/10.1126/science.7886456.

    Article  CAS  PubMed  Google Scholar 

  30. Cantorna MT, Balish E. Inability of human clinical strains of Helicobacter pylori to colonize the alimentary tract of germfree rodents. Can J Microbiol. 1990;36(4):237–41. https://doi.org/10.1139/m90-041.

    Article  CAS  PubMed  Google Scholar 

  31. Csiki Z, Gal I, Sebesi J, Szegedi G. Raynaud syndrome and eradication of Helicobacter pylori. Orv Hetil. 2000;141(52):2827–9.

    CAS  PubMed  Google Scholar 

  32. Gasbarrini A, Massari I, Serricchio M, Tondi P, De Luca A, Franceschi F, et al. Helicobacter pylori eradication ameliorates primary Raynaud’s phenomenon. Dig Dis Sci. 1998;43(8):1641–5. https://doi.org/10.1023/a:1018842527111.

    Article  CAS  PubMed  Google Scholar 

  33. Savarino V, Sulli A, Zentilin P, Raffaella Mele M, Cutolo M. No evidence of an association between Helicobacter pylori infection and Raynaud phenomenon. Scand J Gastroenterol. 2000;35(12):1251–4.

    Article  CAS  Google Scholar 

  34. Sulli A, Seriolo B, Savarino V, Cutolo M. Lack of correlation between gastric Helicobacter pylori infection and primary or secondary Raynaud’s phenomenon in patients with systemic sclerosis. J Rheumatol. 2000;27(7):1820–1.

    CAS  PubMed  Google Scholar 

  35. Herve F, Cailleux N, Benhamou Y, Ducrotte P, Lemeland JF, Denis P, et al. Helicobacter pylori prevalence in Raynaud’s disease. La Revue de Medecine Interne. 2006;27(10):736–41. https://doi.org/10.1016/j.revmed.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  36. Filipec Kanizaj T, Katicic M, Presecki V, Gasparov S, Colic Cvrlje V, Kolaric B, et al. Serum antibodies positivity to 12 Helicobacter pylori virulence antigens in patients with benign or malignant gastroduodenal diseases—cross-sectional study. Croatian Med J. 2009;50(2):124–32. https://doi.org/10.3325/cmj.2009.50.124.

    Article  Google Scholar 

  37. Efthymiou G, Dardiotis E, Liaskos C, Marou E, Tsimourtou V, Rigopoulou EI, et al. Immune responses against Helicobacter pylori-specific antigens differentiate relapsing remitting from secondary progressive multiple sclerosis. Sci Rep. 2017;7(1):7929. https://doi.org/10.1038/s41598-017-07801-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiba S, Sugiyama T, Yonekura K, Tanaka S, Matsumoto H, Fujii N, et al. An antibody to VacA of Helicobacter pylori in the CSF of patients with Miller-Fisher syndrome. Neurology. 2004;63(11):2184–6. https://doi.org/10.1212/01.wnl.0000145705.82690.04.

    Article  CAS  PubMed  Google Scholar 

  39. Chiba S, Sugiyama T, Yonekura K, Tanaka S, Matsumoto H, Fujii N, et al. An antibody to VacA of Helicobacter pylori in cerebrospinal fluid from patients with Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 2002;73(1):76–8. https://doi.org/10.1136/jnnp.73.1.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kodama M, Kitadai Y, Ito M, Kai H, Masuda H, Tanaka S, et al. Immune response to CagA protein is associated with improved platelet count after Helicobacter pylori eradication in patients with idiopathic thrombocytopenic purpura. Helicobacter. 2007;12(1):36–42. https://doi.org/10.1111/j.1523-5378.2007.00477.x.

    Article  CAS  PubMed  Google Scholar 

  41. Efthymiou G, Dardiotis E, Liaskos C, Marou E, Tsimourtou V, Scheper T, et al. Anti-hsp60 antibody responses based on Helicobacter pylori in patients with multiple sclerosis: (ir)relevance to disease pathogenesis. J Neuroimmunol. 2016;298:19–23. https://doi.org/10.1016/j.jneuroim.2016.06.009.

    Article  CAS  PubMed  Google Scholar 

  42. Sezikli M, Guliter S, Apan TZ, Aksoy A, Keles H, Ozkurt ZN. Frequencies of serum antibodies to Helicobacter pylori CagA and VacA in a Turkish population with various gastroduodenal diseases. Int J Clin Pract. 2006;60(10):1239–43. https://doi.org/10.1111/j.1742-1241.2005.00778.x.

    Article  CAS  PubMed  Google Scholar 

  43. Us D, Engin D, Hascelik G. Evaluation of western blot methods for serologic diagnosis of Helicobacter pylori infections. Mikrobiyoloji Bulteni. 2002;36(2):153–60.

    PubMed  Google Scholar 

  44. Cook KW, Crooks J, Hussain K, O'Brien K, Braitch M, Kareem H, et al. Helicobacter pylori infection reduces disease severity in an experimental model of multiple sclerosis. Front Microbiol. 2015;6:52. https://doi.org/10.3389/fmicb.2015.00052.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Higgins PD, Johnson LA, Luther J, Zhang M, Sauder KL, Blanco LP, et al. Prior Helicobacter pylori infection ameliorates Salmonella typhimurium-induced colitis: mucosal crosstalk between stomach and distal intestine. Inflamm Bowel Dis. 2011;17(6):1398–408. https://doi.org/10.1002/ibd.21489.

    Article  PubMed  Google Scholar 

  46. Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C, et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest. 2011;121(8):3088–93. https://doi.org/10.1172/JCI45041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshimura S, Isobe N, Matsushita T, Masaki K, Sato S, Kawano Y, et al. Genetic and infectious profiles influence cerebrospinal fluid IgG abnormality in Japanese multiple sclerosis patients. PLoS One. 2014;9(4):e95367. https://doi.org/10.1371/journal.pone.0095367.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mohebi N, Mamarabadi M, Moghaddasi M. Relation of helicobacter pylori infection and multiple sclerosis in Iranian patients. Neurol Int. 2013;5(2):31–3. https://doi.org/10.4081/ni.2013.e10.

    Article  PubMed  Google Scholar 

  49. Li W, Minohara M, Su JJ, Matsuoka T, Osoegawa M, Ishizu T, et al. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population. J Neuroimmunol. 2007;184(1–2):227–31. https://doi.org/10.1016/j.jneuroim.2006.12.010.

    Article  CAS  PubMed  Google Scholar 

  50. Kira J, Kanai T, Nishimura Y, Yamasaki K, Matsushita S, Kawano Y, et al. Western versus Asian types of multiple sclerosis: immunogenetically and clinically distinct disorders. Ann Neurol. 1996;40(4):569–74. https://doi.org/10.1002/ana.410400405.

    Article  CAS  PubMed  Google Scholar 

  51. Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest. 2009;119(9):2475–87. https://doi.org/10.1172/JCI38605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakashima S, Kakugawa T, Yura H, Tomonaga M, Harada T, Hara A, et al. Identification of Helicobacter pylori VacA in human lung and its effects on lung cells. Biochem Biophys Res Commun. 2015;460(3):721–6. https://doi.org/10.1016/j.bbrc.2015.03.096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arismendi Sosa AC, Salinas Ibanez AG, Perez Chaca MV, Penissi AB, Gomez NN, Vega AE. Study of Helicobacter pylori infection on lung using an animal model. Microb Pathog. 2018;123:410–8. https://doi.org/10.1016/j.micpath.2018.07.038.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

George Efthymiou is supported by a PhD scholarship funded by the Hellenic State Scholarship Foundation (IKY, Greece).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Bogdanos.

Ethics declarations

The present study conformed to the principles in the Declaration of Helsinki. A written informed consent was obtained from all patients and controls. This study was carried out after approval of the Ethical Committee of the University General Hospital of Larissa (Protocol Number: 2406/18-06-2015).

Conflict of interest

Thomas Scheper and Wolfgang Meyer are employees of Euroimmun AG. All other authors do not have conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efthymiou, G., Liaskos, C., Simopoulou, T. et al. Antigen-specific humoral responses against Helicobacter pylori in patients with systemic sclerosis. Immunol Res 68, 39–47 (2020). https://doi.org/10.1007/s12026-020-09124-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09124-w

Keywords

Navigation