Skip to main content

Advertisement

Log in

On the immunoregulatory role of statins in multiple sclerosis: the effects on Th17 cells

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Statins, the cholesterol-lowering drugs, also possess immunomodulatory properties, affecting among others T cell activation and differentiation, antigen presentation, and regulatory T cell (Tregs) maintenance and differentiation. Their effects on autoagression have led investigators to assess their clinical significance in autoimmune disease, such as multiple sclerosis (MS), a chronic progressive demyelinating disease of autoimmune nature. The dysregulated immunity noted in MS features a profound shift from Tregs dominance to Th17 cell superiority. In this review, we discuss the immunobiological basis of statins, their role in autoimmunity related to MS, and the data from experimental models and human studies on their effect on Th17 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

BBB:

Blood–brain barrier

CSF:

Cerebrospinal fluid

EDSS:

Expanded Disability Status Scale

FACS:

Fluorescence-activated cell sorting

FoxP3:

Forkhead box P3

IFN:

Interferon

IL:

Interleukin

mAb:

Monoclonal antibodies

MBP:

Myelin basic protein

MS:

Multiple sclerosis

NMO:

Neuromyelitis optica

PB:

Peripheral blood

PBMC:

Peripheral blood mononuclear cells

RORC:

Retinoid-related orphan receptor C

RRMS:

Relapsing-remitting MS

SPMS:

Secondary progressive MS

T-bet:

T-box expressed in T cells

TGF:

Transforming growth factor

Th:

T-helper

TNF:

Tumor necrosis factor

Treg:

T regulatory cells

VLA:

Very late antigen

References

  1. Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017;127(10):3577–87. https://doi.org/10.1172/JCI90609.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaskow BJ, Baecher-Allan C. Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med. 2018;8(4). https://doi.org/10.1101/cshperspect.a029025.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chang MR, Rosen H, Griffin PR. RORs in autoimmune disease. Curr Top Microbiol Immunol. 2014;378:171–82. https://doi.org/10.1007/978-3-319-05879-5_8.

    Article  CAS  PubMed  Google Scholar 

  4. Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun. 2018;87:1–15. https://doi.org/10.1016/j.jaut.2017.12.007.

    Article  CAS  PubMed  Google Scholar 

  5. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. 2011;12(3):255–63. https://doi.org/10.1038/ni.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buehler U, Schulenburg K, Yurugi H, Solman M, Abankwa D, Ulges A, et al. Targeting prohibitins at the cell surface prevents Th17-mediated autoimmunity. EMBO J. 2018;37(16). https://doi.org/10.15252/embj.201899429.

  7. Hiltensperger M, Korn T. The interleukin (IL)-23/T helper (Th)17 axis in experimental autoimmune encephalomyelitis and multiple sclerosis. Cold Spring Harb Perspect Med. 2018;8(1). https://doi.org/10.1101/cshperspect.a029637.

    Article  Google Scholar 

  8. Paroni M, Maltese V, De Simone M, Ranzani V, Larghi P, Fenoglio C, et al. Recognition of viral and self-antigens by TH1 and TH1/TH17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. J Allergy Clin Immunol. 2017;140(3):797–808. https://doi.org/10.1016/j.jaci.2016.11.045.

    Article  CAS  PubMed  Google Scholar 

  9. Muls N, Nasr Z, Dang HA, Sindic C, van Pesch V. IL-22, GM-CSF and IL-17 in peripheral CD4+ T cell subpopulations during multiple sclerosis relapses and remission. Impact of corticosteroid therapy. PLoS One. 2017;12(3):e0173780. https://doi.org/10.1371/journal.pone.0173780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;79(Pt B):408–16. https://doi.org/10.1016/j.pnpbp.2017.07.023.

    Article  CAS  Google Scholar 

  11. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm. 2017;2017:3908061–11. https://doi.org/10.1155/2017/3908061.

    Article  CAS  Google Scholar 

  12. Venken K, Hellings N, Broekmans T, Hensen K, Rummens JL, Stinissen P. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol. 2008;180(9):6411–20.

    Article  CAS  PubMed  Google Scholar 

  13. Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation. 2015;22(3):181–95. https://doi.org/10.1159/000362370.

    Article  CAS  PubMed  Google Scholar 

  14. Abdolahi M, Yavari P, Honarvar NM, Bitarafan S, Mahmoudi M, Saboor-Yaraghi AA. Molecular mechanisms of the action of vitamin a in Th17/Treg axis in multiple sclerosis. J Mol Neurosci. 2015;57(4):605–13. https://doi.org/10.1007/s12031-015-0643-1.

    Article  CAS  PubMed  Google Scholar 

  15. Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14(1):117. https://doi.org/10.1186/s12974-017-0892-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol. 2009;21(6):612–8. https://doi.org/10.1016/j.coi.2009.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kleinewietfeld M, Hafler DA. Regulatory T cells in autoimmune neuroinflammation. Immunol Rev. 2014;259(1):231–44. https://doi.org/10.1111/imr.12169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29(9):429–35. https://doi.org/10.1016/j.it.2008.06.005.

    Article  CAS  PubMed  Google Scholar 

  19. Sakkas LI, Mavropoulos A, Perricone C, Bogdanos DP. IL-35: a new immunomodulator in autoimmune rheumatic diseases. Immunol Res. 2018;66(3):305–12. https://doi.org/10.1007/s12026-018-8998-3.

    Article  CAS  PubMed  Google Scholar 

  20. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal. 2011;4(162):ra12. https://doi.org/10.1126/scisignal.2001270.

    Article  PubMed  Google Scholar 

  21. Hao S, Chen X, Wang F, Shao Q, Liu J, Zhao H, et al. Breast cancer cells-derived IL-35 promotes tumor progression via induction of IL-35-producing induced regulatory T cells. Carcinogenesis. 2018;39:1488–96. https://doi.org/10.1093/carcin/bgy136.

    Article  CAS  PubMed  Google Scholar 

  22. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013;19(6):739–46. https://doi.org/10.1038/nm.3179.

    Article  CAS  PubMed  Google Scholar 

  23. Shao TY, Hsu LH, Chien CH, Chiang BL. Novel Foxp3(−) IL-10(−) regulatory T-cells induced by B-cells alleviate intestinal inflammation in vivo. Sci Rep. 2016;6:32415. https://doi.org/10.1038/srep32415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kadowaki A, Miyake S, Saga R, Chiba A, Mochizuki H, Yamamura T. Gut environment-induced intraepithelial autoreactive CD4(+) T cells suppress central nervous system autoimmunity via LAG-3. Nat Commun. 2016;7:11639. https://doi.org/10.1038/ncomms11639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8. https://doi.org/10.1038/nature04753.

    Article  CAS  PubMed  Google Scholar 

  26. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9(6):641–9. https://doi.org/10.1038/ni.1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li L, Kim J, Boussiotis VA. IL-1beta-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells. J Immunol. 2010;185(7):4148–53. https://doi.org/10.4049/jimmunol.1001536.

    Article  CAS  PubMed  Google Scholar 

  28. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112(6):2340–52. https://doi.org/10.1182/blood-2008-01-133967.

    Article  CAS  PubMed  Google Scholar 

  29. Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood. 2009;113(18):4240–9. https://doi.org/10.1182/blood-2008-10-183251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li L, Boussiotis VA. Molecular and functional heterogeneity of T regulatory cells. Clin Immunol. 2011;141(3):244–52. https://doi.org/10.1016/j.clim.2011.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dombrowski Y, O'Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017;20(5):674–80. https://doi.org/10.1038/nn.4528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tao Y, Zhang X, Chopra M, Kim MJ, Buch KR, Kong D, et al. The role of endogenous IFN-beta in the regulation of Th17 responses in patients with relapsing-remitting multiple sclerosis. J Immunol. 2014;192(12):5610–7. https://doi.org/10.4049/jimmunol.1302580.

    Article  CAS  PubMed  Google Scholar 

  33. Sacramento PM, Monteiro C, Dias ASO, Kasahara TM, Ferreira TB, Hygino J, et al. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4(+) T-cell subsets in multiple sclerosis patients. Eur J Immunol. 2018;48(8):1376–88. https://doi.org/10.1002/eji.201847525.

    Article  CAS  PubMed  Google Scholar 

  34. Lowther DE, Chong DL, Ascough S, Ettorre A, Ingram RJ, Boyton RJ, et al. Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response. Acta Neuropathol. 2013;126(4):501–15. https://doi.org/10.1007/s00401-013-1159-9.

    Article  CAS  PubMed  Google Scholar 

  35. Alvarez-Sanchez N, Cruz-Chamorro I, Diaz-Sanchez M, Lardone PJ, Guerrero JM, Carrillo-Vico A. Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients. Sci Rep. 2019;9(1):2302. https://doi.org/10.1038/s41598-019-38897-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Toker A, Slaney CY, Backstrom BT, Harper JL. Glatiramer acetate treatment directly targets CD11b(+)Ly6G(−) monocytes and enhances the suppression of autoreactive T cells in experimental autoimmune encephalomyelitis. Scand J Immunol. 2011;74(3):235–43. https://doi.org/10.1111/j.1365-3083.2011.02575.x.

    Article  CAS  PubMed  Google Scholar 

  37. Rodi M, Dimisianos N, de Lastic AL, Sakellaraki P, Deraos G, Matsoukas J, et al. Regulatory cell populations in relapsing-remitting multiple sclerosiS (RRMS) patients: effect of disease activity and treatment regimens. Int J Mol Sci. 2016;17(9). https://doi.org/10.3390/ijms17091398.

    Article  PubMed Central  Google Scholar 

  38. Pant AB, Wang Y, Mielcarz DW, Kasper EJ, Telesford KM, Mishra M, et al. Alteration of CD39+Foxp3+ CD4 T cell and cytokine levels in EAE/MS following anti-CD52 treatment. J Neuroimmunol. 2017;303:22–30. https://doi.org/10.1016/j.jneuroim.2016.12.010.

    Article  CAS  PubMed  Google Scholar 

  39. Lee J, Park N, Park JY, Kaplan BLF, Pruett SB, Park JW, et al. Induction of immunosuppressive CD8(+)CD25(+)FOXP3(+) regulatory T cells by suboptimal stimulation with staphylococcal enterotoxin C1. J Immunol. 2018;200(2):669–80. https://doi.org/10.4049/jimmunol.1602109.

    Article  CAS  PubMed  Google Scholar 

  40. Sinha S, Itani FR, Karandikar NJ. Immune regulation of multiple sclerosis by CD8+ T cells. Immunol Res. 2014;59(1–3):254–65. https://doi.org/10.1007/s12026-014-8529-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. York NR, Mendoza JP, Ortega SB, Benagh A, Tyler AF, Firan M, et al. Immune regulatory CNS-reactive CD8+T cells in experimental autoimmune encephalomyelitis. J Autoimmun. 2010;35(1):33–44. https://doi.org/10.1016/j.jaut.2010.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deiss A, Brecht I, Haarmann A, Buttmann M. Treating multiple sclerosis with monoclonal antibodies: a 2013 update. Expert Rev Neurother. 2013;13(3):313–35. https://doi.org/10.1586/ern.13.17.

    Article  CAS  PubMed  Google Scholar 

  43. Havrdova E, Belova A, Goloborodko A, Tisserant A, Wright A, Wallstroem E, et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J Neurol. 2016;263(7):1287–95. https://doi.org/10.1007/s00415-016-8128-x.

    Article  CAS  PubMed  Google Scholar 

  44. Balasa RI, Simu M, Voidazan S, Barcutean LI, Bajko Z, Hutanu A, et al. Natalizumab changes the peripheral profile of the Th17 panel in MS patients: new mechanisms of action. CNS Neurol Disord Drug Targets. 2017;16(9):1018–26. https://doi.org/10.2174/1871527316666170807130632.

    Article  CAS  PubMed  Google Scholar 

  45. Moreno Torres I, Garcia-Merino A. Anti-CD20 monoclonal antibodies in multiple sclerosis. Expert Rev Neurother. 2017;17(4):359–71. https://doi.org/10.1080/14737175.2017.1245616.

    Article  CAS  PubMed  Google Scholar 

  46. Mulero P, Midaglia L, Montalban X. Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord. 2018;11:1756286418773025. https://doi.org/10.1177/1756286418773025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Evan JR, Bozkurt SB, Thomas NC, Bagnato F. Alemtuzumab for the treatment of multiple sclerosis. Expert Opin Biol Ther. 2018;18(3):323–34. https://doi.org/10.1080/14712598.2018.1425388.

    Article  CAS  PubMed  Google Scholar 

  48. Zeiser R. Immune modulatory effects of statins. Immunology. 2018;154(1):69–75. https://doi.org/10.1111/imm.12902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rehfield P, Kopes-Kerr C, Clearfield M. The evolution or revolution of statin therapy in primary prevention: where do we go from here? Curr Atheroscler Rep. 2013;15(2):298. https://doi.org/10.1007/s11883-012-0298-0.

    Article  CAS  PubMed  Google Scholar 

  50. Hashemi M, Hoshyar R, Ande SR, Chen QM, Solomon C, Zuse A, et al. Mevalonate cascade and its regulation in cholesterol metabolism in different tissues in health and disease. Curr Mol Pharmacol. 2017;10(1):13–26. https://doi.org/10.2174/1874467209666160112123746.

    Article  CAS  PubMed  Google Scholar 

  51. Kagami S, Owada T, Kanari H, Saito Y, Suto A, Ikeda K, et al. Protein geranylgeranylation regulates the balance between Th17 cells and Foxp3+ regulatory T cells. Int Immunol. 2009;21(6):679–89. https://doi.org/10.1093/intimm/dxp037.

    Article  CAS  PubMed  Google Scholar 

  52. Steffens S, Mach F. Anti-inflammatory properties of statins. Semin Vasc Med. 2004;4(4):417–22. https://doi.org/10.1055/s-2004-869599.

    Article  PubMed  Google Scholar 

  53. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120(1):229–43. https://doi.org/10.1161/CIRCRESAHA.116.308537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Undas A, Brummel-Ziedins KE, Mann KG. Statins and blood coagulation. Arterioscler Thromb Vasc Biol. 2005;25(2):287–94. https://doi.org/10.1161/01.ATV.0000151647.14923.ec.

    Article  CAS  PubMed  Google Scholar 

  55. Meroni PL, Luzzana C, Ventura D. Anti-inflammatory and immunomodulating properties of statins. An additional tool for the therapeutic approach of systemic autoimmune diseases? Clin Rev Allergy Immunol. 2002;23(3):263–77. https://doi.org/10.1385/criai:23:3:263.

    Article  CAS  PubMed  Google Scholar 

  56. Khattri S, Zandman-Goddard G. Statins and autoimmunity. Immunol Res. 2013;56(2–3):348–57. https://doi.org/10.1007/s12026-013-8409-8.

    Article  CAS  PubMed  Google Scholar 

  57. Kobashigawa JA, Katznelson S, Laks H, Johnson JA, Yeatman L, Wang XM, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med. 1995;333(10):621–7. https://doi.org/10.1056/nejm199509073331003.

    Article  CAS  PubMed  Google Scholar 

  58. Pazik J, Ostrowska J, Lewandowski Z, Mroz A, Perkowska-Ptasinska A, Baczkowska T, et al. Renin-angiotensin-aldosterone system inhibitors and statins prolong graft survival in post-transplant glomerulonephritis. Ann Transplant. 2008;13(4):41–5.

    PubMed  Google Scholar 

  59. Liu WH, Xu XH, Luo Q, Zhang HL, Wang Y, Xi QY, et al. Inhibition of the rhoA/rho-associated, coiled-coil-containing protein kinase-1 pathway is involved in the therapeutic effects of simvastatin on pulmonary arterial hypertension. Clin Exp Hypertens. 2018;40(3):224–30. https://doi.org/10.1080/10641963.2017.1313849.

    Article  CAS  PubMed  Google Scholar 

  60. Ulivieri C, Baldari CT. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol Res. 2014;88:41–52. https://doi.org/10.1016/j.phrs.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  61. Zeiser R, Maas K, Youssef S, Durr C, Steinman L, Negrin RS. Regulation of different inflammatory diseases by impacting the mevalonate pathway. Immunology. 2009;127(1):18–25. https://doi.org/10.1111/j.1365-2567.2008.03011.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–30. https://doi.org/10.1038/343425a0.

    Article  CAS  PubMed  Google Scholar 

  63. Muller AL, Freed DH. Basic and clinical observations of mevalonate depletion on the mevalonate signaling pathway. Curr Mol Pharmacol. 2017;10(1):6–12. https://doi.org/10.2174/1874467209666160112125805.

    Article  CAS  PubMed  Google Scholar 

  64. Tricarico PM, Crovella S, Celsi F. Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. Int J Mol Sci. 2015;16(7):16067–84. https://doi.org/10.3390/ijms160716067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park SY, Lee JS, Ko YJ, Kim AR, Choi MK, Kwak MK, et al. Inhibitory effect of simvastatin on the TNF-alpha- and angiotensin II-induced monocyte adhesion to endothelial cells is mediated through the suppression of geranylgeranyl isoprenoid-dependent ROS generation. Arch Pharm Res. 2008;31(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang X, Tao Y, Wang J, Garcia-Mata R, Markovic-Plese S. Simvastatin inhibits secretion of Th17-polarizing cytokines and antigen presentation by DCs in patients with relapsing remitting multiple sclerosis. Eur J Immunol. 2013;43(1):281–9. https://doi.org/10.1002/eji.201242566.

    Article  CAS  PubMed  Google Scholar 

  67. Forero-Pena DA, Gutierrez FR. Statins as modulators of regulatory T-cell biology. Mediat Inflamm. 2013;2013:167086–10. https://doi.org/10.1155/2013/167086.

    Article  CAS  Google Scholar 

  68. Chalubinski M, Broncel M. Influence of statins on effector and regulatory immune mechanisms and their potential clinical relevance in treating autoimmune disorders. Med Sci Monit. 2010;16(11):RA245–51.

    CAS  PubMed  Google Scholar 

  69. Xu H, Li XL, Yue LT, Li H, Zhang M, Wang S, et al. Therapeutic potential of atorvastatin-modified dendritic cells in experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells and NKR-P1(+) cells. J Neuroimmunol. 2014;269(1–2):28–37. https://doi.org/10.1016/j.jneuroim.2014.02.002.

    Article  CAS  PubMed  Google Scholar 

  70. Reuter B, Rodemer C, Grudzenski S, Meairs S, Bugert P, Hennerici MG, et al. Effect of simvastatin on MMPs and TIMPs in human brain endothelial cells and experimental stroke. Transl Stroke Res. 2015;6(2):156–9. https://doi.org/10.1007/s12975-014-0381-7.

    Article  CAS  PubMed  Google Scholar 

  71. Neuhaus O, Strasser-Fuchs S, Fazekas F, Kieseier BC, Niederwieser G, Hartung HP, et al. Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology. 2002;59(7):990–7.

    Article  CAS  PubMed  Google Scholar 

  72. Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol. 2003;23(5):769–75. https://doi.org/10.1161/01.ATV.0000068646.76823.AE.

    Article  CAS  PubMed  Google Scholar 

  73. Cerda A, Rodrigues AC, Alves C, Genvigir FD, Fajardo CM, Dorea EL, et al. Modulation of adhesion molecules by cholesterol-lowering therapy in mononuclear cells from hypercholesterolemic patients. Cardiovasc Ther. 2015;33(4):168–76. https://doi.org/10.1111/1755-5922.12126.

    Article  CAS  PubMed  Google Scholar 

  74. Shimabukuro-Vornhagen A, Zoghi S, Liebig TM, Wennhold K, Chemitz J, Draube A, et al. Inhibition of protein geranylgeranylation specifically interferes with CD40-dependent B cell activation, resulting in a reduced capacity to induce T cell immunity. J Immunol. 2014;193(10):5294–305. https://doi.org/10.4049/jimmunol.1203436.

    Article  CAS  PubMed  Google Scholar 

  75. Alber HF, Frick M, Suessenbacher A, Doerler J, Schirmer M, Stocker EM, et al. Effect of atorvastatin on circulating proinflammatory T-lymphocyte subsets and soluble CD40 ligand in patients with stable coronary artery disease--a randomized, placebo-controlled study. Am Heart J. 2006;151(1):139–139.e7. https://doi.org/10.1016/j.ahj.2005.10.006.

    Article  CAS  PubMed  Google Scholar 

  76. Kubatka P, Kruzliak P, Rotrekl V, Jelinkova S, Mladosievicova B. Statins in oncological research: from experimental studies to clinical practice. Crit Rev Oncol Hematol. 2014;92(3):296–311. https://doi.org/10.1016/j.critrevonc.2014.08.002.

    Article  PubMed  Google Scholar 

  77. Gauthaman K, Fong CY, Bongso A. Statins, stem cells, and cancer. J Cell Biochem. 2009;106(6):975–83. https://doi.org/10.1002/jcb.22092.

    Article  CAS  PubMed  Google Scholar 

  78. Link A, Selejan S, Hewera L, Walter F, Nickenig G, Bohm M. Rosuvastatin induces apoptosis in CD4(+)CD28 (null) T cells in patients with acute coronary syndromes. Clin Res Cardiol. 2011;100(2):147–58. https://doi.org/10.1007/s00392-010-0225-8.

    Article  CAS  PubMed  Google Scholar 

  79. Brinkkoetter PT, Gottmann U, Schulte J, van der Woude FJ, Braun C, Yard BA. Atorvastatin interferes with activation of human CD4(+) T cells via inhibition of small guanosine triphosphatase (GTPase) activity and caspase-independent apoptosis. Clin Exp Immunol. 2006;146(3):524–32. https://doi.org/10.1111/j.1365-2249.2006.03217.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Samson KT, Minoguchi K, Tanaka A, Oda N, Yokoe T, Okada S, et al. Effect of fluvastatin on apoptosis in human CD4+ T cells. Cell Immunol. 2005;235(2):136–44. https://doi.org/10.1016/j.cellimm.2005.08.028.

    Article  CAS  PubMed  Google Scholar 

  81. Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis. 2005;26(5):883–91. https://doi.org/10.1093/carcin/bgi036.

    Article  CAS  PubMed  Google Scholar 

  82. Yilmaz A, Reiss C, Tantawi O, Weng A, Stumpf C, Raaz D, et al. HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis. 2004;172(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  83. Ghittoni R, Napolitani G, Benati D, Ulivieri C, Patrussi L, Laghi Pasini F, et al. Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. Eur J Immunol. 2006;36(11):2885–93. https://doi.org/10.1002/eji.200636567.

    Article  PubMed  Google Scholar 

  84. Zhang X, Markovic-Plese S. Statins’ immunomodulatory potential against Th17 cell-mediated autoimmune response. Immunol Res. 2008;41(3):165–74. https://doi.org/10.1007/s12026-008-8019-z.

    Article  CAS  PubMed  Google Scholar 

  85. Ulivieri C, Fanigliulo D, Benati D, Pasini FL, Baldari CT. Simvastatin impairs humoral and cell-mediated immunity in mice by inhibiting lymphocyte homing, T-cell activation and antigen cross-presentation. Eur J Immunol. 2008;38(10):2832–44. https://doi.org/10.1002/eji.200838278.

    Article  CAS  PubMed  Google Scholar 

  86. Lee CS, Shin YJ, Won C, Lee YS, Park CG, Ye SK, et al. Simvastatin acts as an inhibitor of interferon gamma-induced cycloxygenase-2 expression in human THP-1 cells, but not in murine RAW264.7 cells. Biocell. 2009;33(2):107–14.

    CAS  PubMed  Google Scholar 

  87. Maneechotesuwan K, Kasetsinsombat K, Wamanuttajinda V, Wongkajornsilp A, Barnes PJ. Statins enhance the effects of corticosteroids on the balance between regulatory T cells and Th17 cells. Clin Exp Allergy. 2013;43(2):212–22. https://doi.org/10.1111/cea.12067.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J Immunol. 2008;180(10):6988–96.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Li D, Jones D, Bassett R, Sale GE, Khalili J, et al. Blocking LFA-1 activation with lovastatin prevents graft-versus-host disease in mouse bone marrow transplantation. Biol Blood Marrow Transplant. 2009;15(12):1513–22. https://doi.org/10.1016/j.bbmt.2009.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Godoy JC, Niesman IR, Busija AR, Kassan A, Schilling JM, Schwarz A, et al. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J. 2018:fj201800876R. https://doi.org/10.1096/fj.201800876R.

    Article  CAS  PubMed  Google Scholar 

  91. Tang TT, Song Y, Ding YJ, Liao YH, Yu X, Du R, et al. Atorvastatin upregulates regulatory T cells and reduces clinical disease activity in patients with rheumatoid arthritis. J Lipid Res. 2011;52(5):1023–32. https://doi.org/10.1194/jlr.M010876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cheng SM, Lai JH, Yang SP, Tsao TP, Ho LJ, Liou JT, et al. Modulation of human T cells signaling transduction by lovastatin. Int J Cardiol. 2010;140(1):24–33. https://doi.org/10.1016/j.ijcard.2008.10.044.

    Article  PubMed  Google Scholar 

  93. Leuenberger T, Pfueller CF, Luessi F, Bendix I, Paterka M, Prozorovski T, et al. Modulation of dendritic cell immunobiology via inhibition of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. PLoS One. 2014;9(7):e100871. https://doi.org/10.1371/journal.pone.0100871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li XL, Dou YC, Liu Y, Shi CW, Cao LL, Zhang XQ, et al. Atorvastatin ameliorates experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells. Cell Immunol. 2011;271(2):455–61. https://doi.org/10.1016/j.cellimm.2011.08.015.

    Article  CAS  PubMed  Google Scholar 

  95. Meng X, Zhang K, Li J, Dong M, Yang J, An G, et al. Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Mol Med. 2012;18:598–605. https://doi.org/10.2119/molmed.2011.00471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mausner-Fainberg K, Luboshits G, Mor A, Maysel-Auslender S, Rubinstein A, Keren G, et al. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4+CD25+ T cells. Atherosclerosis. 2008;197(2):829–39. https://doi.org/10.1016/j.atherosclerosis.2007.07.031.

    Article  CAS  PubMed  Google Scholar 

  97. Tintore M, Vidal-Jordana A, Sastre-Garriga J. Treatment of multiple sclerosis - success from bench to bedside. Nat Rev Neurol. 2018;15:53–8. https://doi.org/10.1038/s41582-018-0082-z.

    Article  CAS  Google Scholar 

  98. Zettl UK, Hecker M, Aktas O, Wagner T, Rommer PS. Interferon beta-1a and beta-1b for patients with multiple sclerosis: updates to current knowledge. Expert Rev Clin Immunol. 2018;14(2):137–53. https://doi.org/10.1080/1744666X.2018.1426462.

    Article  CAS  PubMed  Google Scholar 

  99. Montes Diaz G, Hupperts R, Fraussen J, Somers V. Dimethyl fumarate treatment in multiple sclerosis: recent advances in clinical and immunological studies. Autoimmun Rev. 2018;17:1240–50. https://doi.org/10.1016/j.autrev.2018.07.001.

    Article  CAS  PubMed  Google Scholar 

  100. Dargahi N, Katsara M, Tselios T, Androutsou ME, de Courten M, Matsoukas J, et al. Multiple sclerosis: immunopathology and treatment update. Brain Sci. 2017;7(7). https://doi.org/10.3390/brainsci7070078.

    Article  PubMed Central  Google Scholar 

  101. Ciurleo R, Bramanti P, Marino S. Role of statins in the treatment of multiple sclerosis. Pharmacol Res. 2014;87:133–43. https://doi.org/10.1016/j.phrs.2014.03.004.

    Article  CAS  PubMed  Google Scholar 

  102. Stanislaus R, Singh AK, Singh I. Lovastatin treatment decreases mononuclear cell infiltration into the CNS of Lewis rats with experimental allergic encephalomyelitis. J Neurosci Res. 2001;66(2):155–62. https://doi.org/10.1002/jnr.1207.

    Article  CAS  PubMed  Google Scholar 

  103. Stanislaus R, Pahan K, Singh AK, Singh I. Amelioration of experimental allergic encephalomyelitis in Lewis rats by lovastatin. Neurosci Lett. 1999;269(2):71–4.

    Article  CAS  PubMed  Google Scholar 

  104. Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997;100(11):2671–9. https://doi.org/10.1172/JCI119812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, Baker D, et al. Lovastatin inhibits brain endothelial cell rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J. 2003;17(8):905–7. https://doi.org/10.1096/fj.02-1014fje.

    Article  CAS  PubMed  Google Scholar 

  106. Bhardwaj S, Coleman CI, Sobieraj DM. Efficacy of statins in combination with interferon therapy in multiple sclerosis: a meta-analysis. Am J Health Syst Pharm. 2012;69(17):1494–9. https://doi.org/10.2146/ajhp110675.

    Article  CAS  PubMed  Google Scholar 

  107. Chen Z, Yang D, Peng X, Lin J, Su Z, Li J, et al. Beneficial effect of atorvastatin-modified dendritic cells pulsed with myelin oligodendrocyte glycoprotein autoantigen on experimental autoimmune encephalomyelitis. Neuroreport. 2018;29(4):317–27. https://doi.org/10.1097/WNR.0000000000000962.

    Article  CAS  PubMed  Google Scholar 

  108. de Oliveira DM, de Oliveira EM, Ferrari Mde F, Semedo P, Hiyane MI, Cenedeze MA, et al. Simvastatin ameliorates experimental autoimmune encephalomyelitis by inhibiting Th1/Th17 response and cellular infiltration. Inflammopharmacology. 2015;23(6):343–54. https://doi.org/10.1007/s10787-015-0252-1.

    Article  CAS  PubMed  Google Scholar 

  109. Abtahi Froushani SM, Delirezh N, Hobbenaghi R, Mosayebi G. Synergistic effects of atorvastatin and all-trans retinoic acid in ameliorating animal model of multiple sclerosis. Immunol Investig. 2014;43(1):54–68. https://doi.org/10.3109/08820139.2013.825269.

    Article  CAS  Google Scholar 

  110. Weber MS, Prod'homme T, Youssef S, Dunn SE, Steinman L, Zamvil SS. Neither T-helper type 2 nor Foxp3+ regulatory T cells are necessary for therapeutic benefit of atorvastatin in treatment of central nervous system autoimmunity. J Neuroinflammation. 2014;11:29. https://doi.org/10.1186/1742-2094-11-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li Z, Chen L, Niu X, Liu J, Ping M, Li R, et al. Immunomodulatory synergy by combining atorvastatin and rapamycin in the treatment of experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol. 2012;250(1–2):9–17. https://doi.org/10.1016/j.jneuroim.2012.05.008.

    Article  CAS  PubMed  Google Scholar 

  112. Paintlia AS, Paintlia MK, Singh I, Singh AK. Combined medication of lovastatin with rolipram suppresses severity of experimental autoimmune encephalomyelitis. Exp Neurol. 2008;214(2):168–80. https://doi.org/10.1016/j.expneurol.2008.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bailey SL, Schreiner B, McMahon EJ, Miller SD. CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol. 2007;8(2):172–80. https://doi.org/10.1038/ni1430.

    Article  CAS  PubMed  Google Scholar 

  114. Nath N, Giri S, Prasad R, Singh AK, Singh I. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy. J Immunol. 2004;172(2):1273–86.

    Article  CAS  PubMed  Google Scholar 

  115. Paintlia AS, Paintlia MK, Singh AK, Stanislaus R, Gilg AG, Barbosa E, et al. Regulation of gene expression associated with acute experimental autoimmune encephalomyelitis by lovastatin. J Neurosci Res. 2004;77(1):63–81. https://doi.org/10.1002/jnr.20130.

    Article  CAS  PubMed  Google Scholar 

  116. Paintlia AS, Paintlia MK, Hollis BW, Singh AK, Singh I. Interference with RhoA-ROCK signaling mechanism in autoreactive CD4+ T cells enhances the bioavailability of 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis. Am J Pathol. 2012;181(3):993–1006. https://doi.org/10.1016/j.ajpath.2012.05.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Paintlia AS, Paintlia MK, Singh AK, Singh I. Modulation of rho-rock signaling pathway protects oligodendrocytes against cytokine toxicity via PPAR-alpha-dependent mechanism. Glia. 2013;61(9):1500–17. https://doi.org/10.1002/glia.22537.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420(6911):78–84. https://doi.org/10.1038/nature01158.

    Article  CAS  PubMed  Google Scholar 

  119. Aktas O, Waiczies S, Smorodchenko A, Dorr J, Seeger B, Prozorovski T, et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med. 2003;197(6):725–33. https://doi.org/10.1084/jem.20021425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Paintlia AS, Paintlia MK, Singh I, Singh AK. Immunomodulatory effect of combination therapy with lovastatin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside alleviates neurodegeneration in experimental autoimmune encephalomyelitis. Am J Pathol. 2006;169(3):1012–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stuve O, Youssef S, Weber MS, Nessler S, von Budingen HC, Hemmer B, et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest. 2006;116(4):1037–44. https://doi.org/10.1172/JCI25805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pihl-Jensen G, Tsakiri A, Frederiksen JL. Statin treatment in multiple sclerosis: a systematic review and meta-analysis. CNS Drugs. 2015;29(4):277–91. https://doi.org/10.1007/s40263-015-0239-x.

    Article  CAS  PubMed  Google Scholar 

  123. Togha M, Karvigh SA, Nabavi M, Moghadam NB, Harirchian MH, Sahraian MA, et al. Simvastatin treatment in patients with relapsing-remitting multiple sclerosis receiving interferon beta 1a: a double-blind randomized controlled trial. Mult Scler. 2010;16(7):848–54. https://doi.org/10.1177/1352458510369147.

    Article  CAS  PubMed  Google Scholar 

  124. Lanzillo R, Quarantelli M, Pozzilli C, Trojano M, Amato MP, Marrosu MG, et al. No evidence for an effect on brain atrophy rate of atorvastatin add-on to interferon beta1b therapy in relapsing-remitting multiple sclerosis (the ARIANNA study). Mult Scler. 2016;22(9):1163–73. https://doi.org/10.1177/1352458515611222.

    Article  CAS  PubMed  Google Scholar 

  125. Lanzillo R, Orefice G, Quarantelli M, Rinaldi C, Prinster A, Ventrella G, et al. Atorvastatin combined to interferon to verify the efficacy (ACTIVE) in relapsing-remitting active multiple sclerosis patients: a longitudinal controlled trial of combination therapy. Mult Scler. 2010;16(4):450–4. https://doi.org/10.1177/1352458509358909.

    Article  CAS  PubMed  Google Scholar 

  126. Ghasami K, Faraji F, Fazeli M, Ghazavi A, Mosayebi G. Interferon beta-1a and atorvastatin in the treatment of multiple sclerosis. Iran J Immunol. 2016;13(1):16–26.

    PubMed  Google Scholar 

  127. Chataway J, Schuerer N, Alsanousi A, Chan D, MacManus D, Hunter K, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383(9936):2213–21. https://doi.org/10.1016/S0140-6736(13)62242-4.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang X, Tao Y, Troiani L, Markovic-Plese S. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. J Immunol. 2011;187(6):3431–7. https://doi.org/10.4049/jimmunol.1100580.

    Article  CAS  PubMed  Google Scholar 

  129. Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Markovic-Plese S, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet. 2004;363(9421):1607–8. https://doi.org/10.1016/s0140-6736(04)16205-3.

    Article  CAS  PubMed  Google Scholar 

  130. Chan D, Binks S, Nicholas JM, Frost C, Cardoso MJ, Ourselin S, et al. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol. 2017;16(8):591–600. https://doi.org/10.1016/s1474-4422(17)30113-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Paul F, Waiczies S, Wuerfel J, Bellmann-Strobl J, Dorr J, Waiczies H, et al. Oral high-dose atorvastatin treatment in relapsing-remitting multiple sclerosis. PLoS One. 2008;3(4):e1928. https://doi.org/10.1371/journal.pone.0001928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li XL, Zhang ZC, Zhang B, Jiang H, Yu CM, Zhang WJ, et al. Atorvastatin calcium in combination with methylprednisolone for the treatment of multiple sclerosis relapse. Int Immunopharmacol. 2014;23(2):546–9. https://doi.org/10.1016/j.intimp.2014.10.004.

    Article  CAS  PubMed  Google Scholar 

  133. Kamm CP, Mattle HP, Group SS. Swiss atorvastatin and interferon Beta-1b trial in multiple sclerosis (SWABIMS)--rationale, design and methodology. Trials. 2009;10:115. https://doi.org/10.1186/1745-6215-10-115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kamm CP, El-Koussy M, Humpert S, Findling O, Burren Y, Schwegler G, et al. Atorvastatin added to interferon beta for relapsing multiple sclerosis: 12-month treatment extension of the randomized multicenter SWABIMS trial. PLoS One. 2014;9(1):e86663. https://doi.org/10.1371/journal.pone.0086663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Birnbaum G, Cree B, Altafullah I, Zinser M, Reder AT. Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology. 2008;71(18):1390–5. https://doi.org/10.1212/01.wnl.0000319698.40024.1c.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Bogdanos.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Georgios Ntolkeras, Chrysanthi Barba, Athanasios Mavropoulos, shared first authorship

Lazaros I. Sakkas, Georgios Hadjigeorgiou, Dimitrios P. Bogdanos, shared last authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntolkeras, G., Barba, C., Mavropoulos, A. et al. On the immunoregulatory role of statins in multiple sclerosis: the effects on Th17 cells. Immunol Res 67, 310–324 (2019). https://doi.org/10.1007/s12026-019-09089-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09089-5

Keywords

Navigation