Skip to main content

Advertisement

Log in

Review of the “X chromosome-nucleolus nexus” hypothesis of autoimmune diseases with an update explaining disruption of the nucleolus

  • Hypothesis
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The “X chromosome-nucleolus nexus” hypothesis provides a comprehensive explanation of how autoantibodies can develop following cellular stress. The hypothesis connects autoimmune diseases with the impact of environmental factors, such as viruses, through epigenetic disruption. The inactive X chromosome, a major epigenetic structure in the female cell’s nucleus, is a key component of the hypothesis. The inactive X is vulnerable to disruption due to the following: (1) its heavy requirements for methylation to suppress gene expression, (2) its peripheral location at the nuclear envelope, (3) its late replication timing, and (4) its frequently observed close association with the nucleolus. The dynamic nucleolus can expand dramatically in response to cellular stress and this could disrupt the neighboring inactive X, particularly during replication, leading to expression from previously suppressed chromatin. Especially vulnerable at the surface of the inactive X chromosome would be genes and elements from Xp22 to the terminus of the short arm of the X. Expression of these genes and elements could interfere with nucleolar integrity, nucleolar efficiency, and future nucleolar stress response, and even lead to fragmentation of the nucleolus. Ribonucleoprotein complexes assembled in the nucleolus could be left in incomplete states and inappropriate conformations, and/or contain viral components when the nucleolus is disrupted and these abnormal complexes could initiate an autoimmune response when exposed to the immune system. Epitope spreading could then lead to an autoimmune reaction to the more abundant normal complexes. Many autoantigens reported in lupus and other autoimmune diseases are, at least transiently, nucleolar components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, Petri M, et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 2008;58:2511–7. https://doi.org/10.1002/art.23701.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barr ML, Bertram EG. A morphological distinction between neurons of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature. 1949;163:676–7.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang LF, Huynh KD, Lee JT. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell. 2007;129:693–706.

    Article  CAS  PubMed  Google Scholar 

  4. Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet. 2015;6:22–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brooks WH, Renaudineau Y. The ‘nucleolus’ hypothesis of autoimmune diseases and its implications. Eur. Med J. 2017;2:82–9.

    Google Scholar 

  6. Brooks WH. A review of autoimmune disease hypotheses with introduction of the “nucleolus” hypothesis. Clin Rev Allergy Immunol. 2017;52:333–50.

    Article  CAS  PubMed  Google Scholar 

  7. Brooks W. Autoimmune diseases and polyamines. Clinic Rev Allerg Immu. 2012;42:58–70.

    Article  CAS  Google Scholar 

  8. Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nature Cell Biol. 2006;8:293–9. https://doi.org/10.1038/ncb1365.

    Article  CAS  PubMed  Google Scholar 

  9. Finestra TR, Bribnau J. X chromosome inactivation: silencing, topology and reactivation. Curr Opin Cell Biol. 2017;46:54–61.

    Article  CAS  Google Scholar 

  10. Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell. 2010;143:390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gendrel AV, Heard E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Ann Rev Cell Dev Biol. 2014;30:561–80.

    Article  CAS  Google Scholar 

  12. Galupa R, Heard E. X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev. 2015;31:57–66.

    Article  CAS  PubMed  Google Scholar 

  13. Gendrel AV, Heard E. Fifty years of X inactivation research. Development. 2011;138:5049–55.

    Article  CAS  PubMed  Google Scholar 

  14. Lyon MF. X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet. 1998;80:133–7.

    Article  CAS  PubMed  Google Scholar 

  15. Bailey JA, Carrel L, Chakravarti A, Eichler EE. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. PNAS. 2000;97(12):6634–9. https://doi.org/10.1073/pnas.97.12.6634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross MT, Graham DV, Coffey AJ, et al. The DNA sequence of the human X chromosome. Nature. 2005;434:325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Disteche CM, Berletch JB. X-chromosome inactivation and escape. J Genet. 2015;94:591–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balaton BP, Brown CJ. Escape artists of the X chromosome. Trends Genet. 2016;32:348–59. https://doi.org/10.1016/j.tig.2016.03.007.

    Article  CAS  PubMed  Google Scholar 

  20. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4.

    Article  CAS  PubMed  Google Scholar 

  21. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human Population. Proc Natl Acad Sci U S A. 2003;100:5280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li JZ, Steinman CR. Plasma DNA in systemic lupus erythematosus. Arthritis Rheum. 1989;32:726–33.

    Article  CAS  PubMed  Google Scholar 

  23. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35:41–8.

    Article  CAS  PubMed  Google Scholar 

  24. Sawalha AH, Webb R, Han S, Kelly JA, Kaufman KM, Kimberly RP, et al. Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS One. 2008;3:e1727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Yuan J, Pan Y, Fei Y, Qiu X, Hu N, et al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin Immunol. 2009;132:362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, et al. Sex-specific association of X-linked toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. PNAS. 2010;107:15838–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, et al. Overexpression of X-linked genes in T cells from women with lupus. J Autoimmunity. 2013;41:60–71.

    Article  CAS  Google Scholar 

  28. Spriggs MK, Armitage RJ, Comeau MR, Strockbine L, Farrah T, Macduff B, et al. The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. J Virol. 1996;70:5557–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Sullivan JM, Pai DA, Cridge AG, Engelke DR, Ganley ARD. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? BioMol Concepts. 2013;4:277–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Padeken J, Heun P. Nucleolus and nuclear periphery: Velcro for heterochromatin. Curr Opin Cell Biol. 2014;28:54–60.

    Article  CAS  PubMed  Google Scholar 

  31. Grummt I. The nucleolus--guardian of cellular homeostasis and genome integrity. Chromosoma. 2013;122:487–97.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI. NOPdb: Nucleolar Proteome Database—2008 update. Nucleic Acids Res. 2009;37(suppl 1):D181–4. https://doi.org/10.1093/nar/gkn804.

    Article  CAS  PubMed  Google Scholar 

  33. O’Day DH, Catalano A. Proteins of the nucleolus: an introduction. In: O’Day D, Catalano A, editors. Proteins of the nucleolus. Dordrecht: Springer; 2013. p. 3–15.

    Chapter  Google Scholar 

  34. Boisvert FM, Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8:574–85. https://doi.org/10.1038/nrm2184.

    Article  CAS  PubMed  Google Scholar 

  35. Lam YW, Trinkle-Mulcahy L. New insights into nucleolar structure and function. F1000 Prime Rep. 2015;7:48–57.

    Article  CAS  Google Scholar 

  36. Ogawa LM, Baserga SJ. Crosstalk between the nucleolus and the DNA damage response. Mol BioSyst. 2017;13:443–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus. 2011;2:189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DLJ. The nucleolus: structure/function relationship in RNA metabolism. WIREs RNA. 2010;1:415–31.

    Article  CAS  PubMed  Google Scholar 

  39. Goyns MH. Relationship between polyamine accumulation and RNA biosynthesis and content during the cell cycle. Experientia. 1981;37:34–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hiscox JA. RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol. 2007;5:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salvetti A, Greco A. Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta. 2014;1842:840–7.

    Article  CAS  PubMed  Google Scholar 

  42. Hanlon P, Avenell A, Aucott L, Vickers MA. Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus. Arthritis Res Ther. 2014;16:R3. https://doi.org/10.1186/ar4429.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ascherio A, Munger KL. EBV and autoimmunity. Curr Top Microbiol. 2015;390:365–85. https://doi.org/10.1007/978-3-319-22822-8_15.

    Article  CAS  Google Scholar 

  44. Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B. The proto-oncogene c-myc is a direct target of gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999;73:4481–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A. 1993;90:7084–8. https://doi.org/10.1073/pnas.90.16.7804.

    Article  Google Scholar 

  46. Dang CV. c-Myc targets genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol. 2005;7:311–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct activation of RNA polymerase III transcription by c-Myc. Nature. 2003;421:290–4.

    Article  CAS  PubMed  Google Scholar 

  49. Yaniv G, Twig G, Shor DBA, Furer A, Sherer Y, Mozes O, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. 2015;14:75–9.

    Article  CAS  PubMed  Google Scholar 

  50. Reichlin M. Systemic lupus erythematosus. In Systemic autoimmunity. In: Bigazzi PE, Reichlin M, editors. , vol. 54. New York: Marcel Dekker; 1991. p. 163–200.

    Google Scholar 

  51. Li XZ, McNeilage LJ, Whittingham S. Autoantibodies to the major nucleolar phosphoprotein B23 define a novel subset of patients with anticardiolipin antibodies. Arthritis Rheum. 1989;32:1165–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Xie J, Liu Z, Fu H, Huo Q, Gu Y, et al. Association of calreticulin expression with disease activity and organ damage in systemic lupus erythematosus patients. Exp Therap Med. 2017;13:2577–83.

    Article  CAS  Google Scholar 

  53. Nagai T, Arinuma Y, Yanaagida T, Yamamoto K, Hirohata S. Anti-ribosomal P protein antibody in human systemic lupus erythematosus up-regulates the expression of proinflammatory cytokines by human peripheral blood monocytes. Arthritis Rheum. 2005;52:847–55.

    Article  CAS  PubMed  Google Scholar 

  54. Lassoued K, Guilly MN, Danon F, Andre C, Dhumeaux D, Clauvel JP, et al. Antinuclear autoantibodies specific for lamins: characterization and clinical significance. Ann Intern Med. 1988;108:829–33.

    Article  CAS  PubMed  Google Scholar 

  55. Hengstman GJD, Ter Laak HJ, Egberts WTMV, Lundberg IE, Moutsopoulos HM, Vencovsky J, et al. Anti-signal recognition particle autoantibodies: marker of a necrotizing myopathy. Rheum Dis. 2006;65:1635–8.

    Article  CAS  Google Scholar 

  56. Okano Y, Medsger TA. Autoantibody to the ribonucleoprotein (nucleolar 7–2 rna protein particle) in patients with systemic sclerosis. Arthritis Rheum. 1990;33:1822–8.

    Article  CAS  PubMed  Google Scholar 

  57. Okano Y, Steen VD, Medsger TA. Autoantibody to U3 nucleolar ribonucleoprotein (fibrillarin) in patients with systemic sclerosis. Arthritis Rheum. 1992;35:95–100.

    Article  CAS  PubMed  Google Scholar 

  58. Kipnis RJ, Craft J, Hardin JA. The analysis of antinuclear and antinucleolar autoantibodies of scleroderma by radioimmunoprecipitation assays. Arthritis Rheum. 1990;33:1431–7.

    Article  CAS  PubMed  Google Scholar 

  59. Okano Y, Steen VD, Medsger TA. Autoantibody reactive with RNA polymerase III in systemic sclerosis. Ann Intern Med. 1993;119:1005–13.

    Article  CAS  PubMed  Google Scholar 

  60. Oddis CV, Okano Y, Rudert WA, Trucco M, Duquesnoy RJ, Medsger TA. Serum autoantibody to the nucleolar antigen PM-Scl: clinical and immunogenetic associations. Arthritis Rheum. 1992;35:1211–7.

    Article  CAS  PubMed  Google Scholar 

  61. Reimer G, Steen VD, Penning CA, Medsger TA, Tan EM. Correlates between autoantibodies to nucleolar antigens and clinical features in patients with systemic sclerosis (scleroderma). Arthritis Rheum. 1988;31:525–32.

    Article  CAS  PubMed  Google Scholar 

  62. Jarjour WN, Minota S, Roubey RAS, Mimura T, Winfield JB. Autoantibodies to nucleolin cross-react with histone H1 in systemic lupus erythematosus. Mol Biol Rep. 1992;16:263–6.

    Article  CAS  PubMed  Google Scholar 

  63. Lyu G, Tan T, Guan Y, Sun L, Liang Q, Tao W. Changes in the position and volume of inactive X chromosomes during the G0/G1 transition. Chromosome Res. 2018;26:179–89. https://doi.org/10.1007/s10577-018-9577-0.

    Article  CAS  PubMed  Google Scholar 

  64. Yang F, Deng X, Ma W, Berletch JB, Rabaia N, Wei G, et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding. Genome Biol. 2015;16(52):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Caudron-Herger M, Pankert T, Seiler J, Németh A, Voit R, Grummt I, et al. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 2015;34:2758–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brooks WH. Viral impact in autoimmune diseases: expanding the “X chromosome-nucleolus nexus” hypothesis. Front Immunol. 2017;8:1657–70. https://doi.org/10.3389/fimmu.2017.01657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wise AL, Gyi L, Manolio TA. eXclusion: toward integrating the X chromosome in genome-wide association analyses. Am J Hum Genet. 2013;92:643–7. https://doi.org/10.1016/j.ajhg.2013.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neidhart M, Karouzakis E, Jungel A, Gay RE, Gay S. Inhibition of spermidine/spermine N1-acetyltransferase activity: a new therapeutic concept in rheumatoid arthritis. Mol Cell. 2014;66:1723–33.

    CAS  Google Scholar 

  69. Higashi K, Yoshida M, Igarashi A, Ito K, Wada Y, Murakami S, et al. Intense correlation between protein-conjugated acrolein and primary Sjӧgren’s syndrome. Clin Chim Acta. 2009;411:359–63. https://doi.org/10.1016/j.cca.2009.11.032.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley H. Brooks.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, W.H. Review of the “X chromosome-nucleolus nexus” hypothesis of autoimmune diseases with an update explaining disruption of the nucleolus. Immunol Res 66, 790–799 (2018). https://doi.org/10.1007/s12026-018-9044-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-018-9044-1

Keywords

Navigation