Skip to main content

Advertisement

Log in

Staphylococcal superantigens interact with multiple host receptors to cause serious diseases

  • IMMUNOLOGY AT THE UNIVERSITY OF IOWA
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Staphylococcus aureus strains that cause human diseases produce a large family of pyrogenic toxin superantigens (SAgs). These include toxic shock syndrome toxin-1 (TSST-1), the staphylococcal enterotoxins (SEs), and the SE-like proteins; to date, 23 staphylococcal SAgs have been described. Among the SAgs, three have been highly associated with human diseases (TSST-1, SEB, and SEC), likely because they are produced in high concentrations compared to other SAgs. Another major family of exotoxins produced by S. aureus is the cytolysins, particularly α-, β-, γ-, and δ-toxins, phenol soluble modulins, and leukocidins. This review discusses the association of SAgs with human diseases and particularly the “outside-in” signaling mechanism that leads to SAg-associated diseases. We discuss SAg interactions with three host immune cell receptors, including variable regions of the β-chain of the T cell receptor, MHC II α- and/or β-chains, and an epithelial/endothelial cell receptor that may include CD40. To a lesser extent, we discuss the role of cytolysins in facilitating disease production by SAgs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32.

    Article  CAS  PubMed  Google Scholar 

  2. Que YA, Moreillon P. Infective endocarditis. Nat Rev Cardiol. 2011;8:322–36.

    Article  CAS  PubMed  Google Scholar 

  3. Bergdoll MS, Crass BA, Reiser RF, Robbins RN, Davis JP. A new staphylococcal enterotoxin, enterotoxin F, associated with toxic-shock-syndrome Staphylococcus aureus isolates. Lancet. 1981;1:1017–21.

    Article  CAS  PubMed  Google Scholar 

  4. Bohach GA, Fast DJ, Nelson RD, Schlievert PM. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol. 1990;17:251–72.

    Article  CAS  PubMed  Google Scholar 

  5. McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol. 2001;55:77–104.

    Article  CAS  PubMed  Google Scholar 

  6. Schlievert PM, Shands KN, Dan BB, Schmid GP, Nishimura RD. Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic-shock syndrome. J Infect Dis. 1981;143(4):509–16.

    Article  CAS  PubMed  Google Scholar 

  7. Xiong YQ, Fowler VG, Yeaman MR, Perdreau-Remington F, Kreiswirth BN, Bayer AS. Phenotypic and genotypic characteristics of persistent methicillin-resistant Staphylococcus aureus bacteremia in vitro and in an experimental endocarditis model. J Infect Dis. 2009;199:201–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63:174–229.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Schlievert PM, Strandberg KL, Lin YC, Peterson ML, Leung DY. Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. J Allergy Clin Immunol. 2010;125:39–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–71.

    Article  CAS  PubMed  Google Scholar 

  11. Marrack P, Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990;248:705–11.

    Article  CAS  PubMed  Google Scholar 

  12. Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin Microbiol Rev. 2000;13:16–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol. 2011;9:e1001149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26:422–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hovde CJ, Marr JC, Hoffmann ML, Hackett SP, Chi YI, Crum KK, et al. Investigation of the role of the disulphide bond in the activity and structure of staphylococcal enterotoxin C1. Mol Microbiol. 1994;13:897–909.

    Article  CAS  PubMed  Google Scholar 

  16. Yarwood JM, McCormick JK, Schlievert PM. Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol. 2001;183:1113–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol. 2003;48:1429–49.

    Article  CAS  PubMed  Google Scholar 

  18. Pragman AA, Schlievert PM. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation. FEMS Immunol Med Microbiol. 2004;42:147–54.

    Article  CAS  PubMed  Google Scholar 

  19. Kim YB, Watson DW. A purified group A streptococcal pyrogenic exotoxin. Physiochemical and biological properties including the enhancement of susceptibility to endotoxin lethal shock. J Exp Med. 1970;131:611–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schlievert PM, Watson DW. Group A streptococcal pyrogenic exotoxin: pyrogenicity, alteration of blood–brain barrier, and separation of sites for pyrogenicity and enhancement of lethal endotoxin shock. Infect Immun. 1978;21:753–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Schlievert PM. Cytolysins, superantigens, and pneumonia due to community-associated methicillin-resistant Staphylococcus aureus. J Infect Dis. 2009;200:676–8.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Dinges MM, Schlievert PM. Comparative analysis of lipopolysaccharide-induced tumor necrosis factor alpha activity in serum and lethality in mice and rabbits pretreated with the staphylococcal superantigen toxic shock syndrome toxin 1. Infect Immun. 2001;69:7169–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kotzin BL, Leung DY, Kappler J, Marrack P. Superantigens and their potential role in human disease. Adv Immunol. 1993;54:99–166.

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Llera A, Malchiodi EL, Mariuzza RA. The structural basis of T cell activation by superantigens. Annu Rev Immunol. 1999;17:435–66.

    Article  CAS  PubMed  Google Scholar 

  25. Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol. 2012;2:12.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Huseby M, Shi K, Brown CK, Digre J, Mengistu F, Seo KS, et al. Structure and biological activities of beta toxin from Staphylococcus aureus. J Bacteriol. 2007;189:8719–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, Mann EE, et al. Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci USA. 2010;107:14407–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lin YC, Anderson MJ, Kohler PL, Strandberg KL, Olson ME, Horswill AR, et al. Proinflammatory exoprotein characterization of toxic shock syndrome Staphylococcus aureus. Biochemistry. 2011;50:7157–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tong SY, Chen LF, Fowler VG Jr. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin Immunopathol. 2012;34:185–200.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol. 2012;34:281–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ythier M, Entenza JM, Bille J, Vandenesch F, Bes M, Moreillon P, et al. Natural variability of in vitro adherence to fibrinogen and fibronectin does not correlate with in vivo infectivity of Staphylococcus aureus. Infect Immun. 2010;78:1711–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. DeLeo FR, Diep BA, Otto M. Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin N Am. 2009;23:17–34.

    Article  Google Scholar 

  33. Davis CC, Kremer MJ, Schlievert PM, Squier CA. Penetration of toxic shock syndrome toxin-1 across porcine vaginal mucosa ex vivo: permeability characteristics, toxin distribution, and tissue damage. Am J Obstet Gynecol. 2003;189:1785–91.

    Article  CAS  PubMed  Google Scholar 

  34. Peterson ML, Ault K, Kremer MJ, Klingelhutz AJ, Davis CC, Squier CA, et al. The innate immune system is activated by stimulation of vaginal epithelial cells with Staphylococcus aureus and toxic shock syndrome toxin 1. Infect Immun. 2005;73:2164–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Larkin SM, Williams DN, Osterholm MT, Tofte RW, Posalaky Z. Toxic shock syndrome: clinical, laboratory, and pathologic findings in nine fatal cases. Ann Intern Med. 1982;96(Pt 2):858–64.

    Article  CAS  PubMed  Google Scholar 

  36. Schlievert PM, Nemeth KA, Davis CC, Peterson ML, Jones BE. Staphylococcus aureus exotoxins are present in vivo in tampons. Clin Vaccine Immunol. 2010;17(5):722–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Schlievert PM, Case LC, Nemeth KA, Davis CC, Sun Y, Qin W, et al. Alpha and beta chains of hemoglobin inhibit production of Staphylococcus aureus exotoxins. Biochemistry. 2007;46:14349–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Parsonnet J, Hansmann MA, Delaney ML, Modern PA, Dubois AM, Wieland-Alter W, et al. Prevalence of toxic shock syndrome toxin 1-producing Staphylococcus aureus and the presence of antibodies to this superantigen in menstruating women. J Clin Microbiol. 2005;43:4628–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Li Q, Estes JD, Schlievert PM, Duan L, Brosnahan AJ, Southern PJ, et al. Glycerol monolaurate prevents mucosal SIV transmission. Nature. 2009;458:1034–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Schlievert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stach, C.S., Herrera, A. & Schlievert, P.M. Staphylococcal superantigens interact with multiple host receptors to cause serious diseases. Immunol Res 59, 177–181 (2014). https://doi.org/10.1007/s12026-014-8539-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8539-7

Keywords