Skip to main content

Advertisement

Log in

Understanding the biology of ex vivo-expanded CD8 T cells for adoptive cell therapy: role of CD62L

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

CD62L governs the circulation of CD8+ T cells between lymph nodes and peripheral tissues, whereby the expression of CD62L by CD8+ T cells promotes their recirculation through lymph nodes. As such, CD62L participates in the fate of adoptively transferred CD8+ T cells and may control their effectiveness for cancer immunotherapy, including settings in which host preconditioning results in the acute lymphopenia-induced proliferation of the transferred cells. Indeed, previous studies correlated CD62L expression by donor CD8+ cells with the success rate of adoptive cell therapy (ACT). Here, we analyzed the functions and fate of ex vivo-activated, tumor-specific CD62L−/− CD8+ T cells in a mouse melanoma model for ACT. Unexpectedly, we observed that CD62L−/− CD8+ T cells were functionally indistinguishable from CD62L+/+ CD8+ T cells, i.e., both greatly expanded in cyclophosphamide preconditioned animals, controlled subcutaneously and hematogenously spreading tumors, and generated anti-tumor-specific CD8+ T cell memory. Moreover, even in hosts with rudimentary secondary lymphoid organs (LT−/− animals), CD8+ T cells with and without CD62L expanded equivalently to those adoptively transferred into wild-type animals. These results put into question the utility of CD62L as a predictive biomarker for the efficacy of ex vivo-expanded T cells after ACT in lymphopenic conditions and also offer new insights into the homing, engraftment, and memory generation of adoptively transferred ex vivo-activated CD8+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Starnes CO. Coley’s toxins in perspective. Nature. 1992;357(6373):11–2. doi:10.1038/357011a0.

    Article  CAS  PubMed  Google Scholar 

  2. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13. doi:10.1111/nyas.12180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Romero P, Cerottini JC, Speiser DE. The human T cell response to melanoma antigens. Adv Immunol. 2006;92:187–224. doi:10.1016/S0065-2776(06)92005-7.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(13):4550–7. doi:10.1158/1078-0432.CCR-11-0116.

    Article  CAS  Google Scholar 

  5. Rosenberg SA. Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med. 2012;4(127):127ps8. doi:10.1126/scitranslmed.3003634.

    Article  PubMed  Google Scholar 

  6. Diaz-Montero CM, El Naggar S, Al Khami A, El Naggar R, Montero AJ, Cole DJ, et al. Priming of naive CD8 + T cells in the presence of IL-12 selectively enhances the survival of CD8(+)CD62L (hi) cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother. 2008;57(4):563–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med. 1998;188(2):277–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8 + T cells. J Exp Med. 2003;198(4):569–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Schumacher TN. T-cell-receptor gene therapy. Nat Rev Immunol. 2002;2(7):512–9. doi:10.1038/nri841.

    Article  CAS  PubMed  Google Scholar 

  10. Riddell SR, Jensen MC, June CH. Chimeric antigen receptor–modified T cells: clinical translation in stem cell transplantation and beyond. Biol Blood Marrow Transpl. 2013;19(1 Suppl):S2–5. doi:10.1016/j.bbmt.2012.10.021.

    Article  CAS  Google Scholar 

  11. Diaz-Montero CM, Naga O, Zidan AA, Salem ML, Pallin M, Parmigiani A, et al. Synergy of brief activation of CD8 T-cells in the presence of IL-12 and adoptive transfer into lymphopenic hosts promotes tumor clearance and anti-tumor memory. Am J Cancer Res. 2011;1(7):882–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8 + T cells. J Clin Invest. 2005;115(6):1616–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, et al. Central memory self/tumor-reactive CD8 + T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA. 2005;102(27):9571–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lanzavecchia A, Sallusto F. Understanding the generation and function of memory T cell subsets. Curr Opin Immunol. 2005;17(3):326–32.

    Article  CAS  PubMed  Google Scholar 

  15. Arbones ML, Ord DC, Ley K, Ratech H, Maynard-Curry C, Otten G, et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity. 1994;1(4):247–60.

    Article  CAS  PubMed  Google Scholar 

  16. Xu J, Grewal IS, Geba GP, Flavell RA. Impaired primary T cell responses in L-selectin-deficient mice. J Exp Med. 1996;183(2):589–98.

    Article  CAS  PubMed  Google Scholar 

  17. Schuster K, Gadiot J, Andreesen R, Mackensen A, Gajewski TF, Blank C. Homeostatic proliferation of naive CD8 + T cells depends on CD62L/L-selectin-mediated homing to peripheral LN. Eur J Immunol. 2009;39(11):2981–90. doi:10.1002/eji.200939330.

    Article  CAS  PubMed  Google Scholar 

  18. Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA. 2002;99(4):2193–8. doi:10.1073/pnas.261704098.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Giblin PA, Hwang ST, Katsumoto TR, Rosen SD. Ligation of L-selectin on T lymphocytes activates beta1 integrins and promotes adhesion to fibronectin. J Immunol. 1997;159(7):3498–507.

    CAS  PubMed  Google Scholar 

  20. Steeber DA, Engel P, Miller AS, Sheetz MP, Tedder TF. Ligation of L-selectin through conserved regions within the lectin domain activates signal transduction pathways and integrin function in human, mouse, and rat leukocytes. J Immunol. 1997;159(2):952–63.

    CAS  PubMed  Google Scholar 

  21. Subramanian H, Grailer JJ, Ohlrich KC, Rymaszewski AL, Loppnow JJ, Kodera M, et al. Signaling through L-selectin mediates enhanced chemotaxis of lymphocyte subsets to secondary lymphoid tissue chemokine. J Immunol. 2012;188(7):3223–36. doi:10.4049/jimmunol.1101032.

    Article  CAS  PubMed  Google Scholar 

  22. Dell’Angelica EC. Melanosome biogenesis: shedding light on the origin of an obscure organelle. Trends Cell Biol. 2003;13(10):503–6.

    Article  PubMed  Google Scholar 

  23. Steeber DA, Green NE, Sato S, Tedder TF. Lymphocyte migration in L-selectin-deficient mice. Altered subset migration and aging of the immune system. J Immunol. 1996;157(3):1096–106.

    CAS  PubMed  Google Scholar 

  24. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, et al. Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother. 2005;28(3):258–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science (New York, NY). 1994;264(5159):703–7.

    Article  Google Scholar 

  26. Sprent J, Surh CD. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol. 2011;12(6):478–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4(12):1191–8. doi:10.1038/ni1009.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. doi:10.1158/1078-0432.CCR-11-0116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12(10):671–84. doi:10.1038/nrc3322.

    Article  CAS  PubMed  Google Scholar 

  30. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8 + memory stem cells. Nat Med. 2009;15(7):808–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cavallaro U, Dejana E. Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol. 2011;12(3):189–97. doi:10.1038/nrm3068.

    Article  CAS  PubMed  Google Scholar 

  32. Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Gronholm M. Regulation of integrin activity and signalling. Biochim Biophys Acta. 2009;1790(6):431–44. doi:10.1016/j.bbagen.2009.03.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29(6):848–62. doi:10.1016/j.immuni.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  34. Ito D, Back TC, Shakhov AN, Wiltrout RH, Nedospasov SA. Mice with a targeted mutation in lymphotoxin-alpha exhibit enhanced tumor growth and metastasis: impaired NK cell development and recruitment. J Immunol. 1999;163(5):2809–15.

    CAS  PubMed  Google Scholar 

  35. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8 + T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294–305. doi:10.1172/JCI32103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, et al. A single naive CD8 + T cell precursor can develop into diverse effector and memory subsets. Immunity. 2007;27(6):985–97. doi:10.1016/j.immuni.2007.10.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Dodson Multidisciplinary Immunotherapy Institute at the Sylvester Cancer Center and by National Institute of Health Grant K01CA134927 (to C.M.D). We thank Despina Kolonias and Jian Zhang for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias G. Lichtenheld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Montero, C.M., Zidan, AA., Pallin, M.F. et al. Understanding the biology of ex vivo-expanded CD8 T cells for adoptive cell therapy: role of CD62L. Immunol Res 57, 23–33 (2013). https://doi.org/10.1007/s12026-013-8456-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8456-1

Keywords

Navigation