Skip to main content

Advertisement

Log in

Design of vaccine adjuvants incorporating TNF superfamily ligands and TNF superfamily molecular mimics

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

TNF superfamily ligands play a critical role in the regulation of adaptive immune responses, including the costimulation of dendritic cells, T cells, and B cells. This costimulation could potentially be exploited for the development of prophylactic vaccines and immunotherapy. Despite this, there have been only a limited number of reports on the use of this family of molecules as gene-based adjuvants to enhance DNA and/or viral vector vaccines. In addition, the molecule latent membrane protein 1 (LMP1), a viral mimic of the TNF superfamily receptor CD40, provides an alternative approach for the design of novel molecular adjuvants. Here, we discuss advances in the development of recombinant TNF superfamily ligands as adjuvants for HIV vaccines and as cancer immunotherapy, including the use of LMP1 and LMP1-CD40 chimeric fusion proteins to mimic constitutive CD40 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol. 2013;34:511–9.

    Article  CAS  PubMed  Google Scholar 

  2. Michallet MC, Rota G, Maslowski K, Guarda G. Innate receptors for adaptive immunity. Curr Opin Microbiol. 2013;16(3):296–302.

    Article  CAS  PubMed  Google Scholar 

  3. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.

    Article  CAS  PubMed  Google Scholar 

  4. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol. 2003;3(8):609–20.

    Article  CAS  PubMed  Google Scholar 

  5. Wortzman ME, Clouthier DL, McPherson AJ, Lin GH, Watts TH. The contextual role of TNFR family members in CD8(+) T-cell control of viral infections. Immunol Rev. 2013;255(1):125–48.

    Article  PubMed  Google Scholar 

  6. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol. 2004;22:307–28.

    Article  CAS  PubMed  Google Scholar 

  8. Summers deLuca L, Gommerman JL. Fine-tuning of dendritic cell biology by the TNF superfamily. Nat Rev Immunol. 2012;12(5):339–51.

    PubMed  Google Scholar 

  9. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72.

    Article  CAS  PubMed  Google Scholar 

  10. Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev. 2009;229(1):126–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9(4):271–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang C, Lin GH, McPherson AJ, Watts TH. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev. 2009;229(1):192–215.

    Article  CAS  PubMed  Google Scholar 

  13. Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C. GITR/GITRL: more than an effector T cell co-stimulatory system. Eur J Immunol. 2007;37(5):1165–9.

    Article  CAS  PubMed  Google Scholar 

  14. Rickert RC, Jellusova J, Miletic AV. Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev. 2011;244(1):115–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bolduc A, Long E, Stapler D, Cascalho M, Tsubata T, Koni PA, et al. Constitutive CD40L expression on B cells prematurely terminates germinal center response and leads to augmented plasma cell production in T cell areas. J Immunol. 2010;185(1):220–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Berberich I, Shu GL, Clark EA. Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol. 1994;153(10):4357–66.

    CAS  PubMed  Google Scholar 

  17. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876–83.

    Article  CAS  PubMed  Google Scholar 

  18. Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19(5):1035–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. French RR, Chan HT, Tutt AL, Glennie MJ. CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med. 1999;5(5):548–53.

    Article  CAS  PubMed  Google Scholar 

  20. Morris AE, Remmele RL Jr, Klinke R, Macduff BM, Fanslow WC, Armitage RJ. Incorporation of an isoleucine zipper motif enhances the biological activity of soluble CD40L (CD154). J Biol Chem. 1999;274(1):418–23.

    Article  CAS  PubMed  Google Scholar 

  21. Haswell LE, Glennie MJ, Al-Shamkhani A. Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur J Immunol. 2001;31(10):3094–100.

    Article  CAS  PubMed  Google Scholar 

  22. Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F, et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol. 2003;23(4):1428–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhou Z, Song X, Berezov A, Zhang G, Li Y, Zhang H, et al. Human glucocorticoid-induced TNF receptor ligand regulates its signaling activity through multiple oligomerization states. Proc Natl Acad Sci USA. 2008;105(14):5465–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Melero I, Murillo O, Dubrot J, Hervas-Stubbs S, Perez-Gracia JL. Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol Sci. 2008;29(8):383–90.

    Article  CAS  PubMed  Google Scholar 

  25. Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, et al. Conversion of membrane-bound Fas (CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med. 1998;187(8):1205–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kornbluth RS, Inventor multimeric forms of the TNF superfamily ligands. PCT patent WO 01/42298A1. 2001 06/14/01.

  27. Crouch E, Persson A, Chang D, Heuser J. Molecular structure of pulmonary surfactant protein D (SP-D). J Biol Chem. 1994;269(25):17311–9.

    CAS  PubMed  Google Scholar 

  28. Grassme H, Bock J, Kun J, Gulbins E. Clustering of CD40 ligand is required to form a functional contact with CD40. J Biol Chem. 2002;277:30289–99.

    Article  CAS  PubMed  Google Scholar 

  29. Stone GW, Barzee S, Snarsky V, Kee K, Spina CA, Yu XF, et al. Multimeric soluble CD40 ligand and GITR ligand as adjuvants for human immunodeficiency virus DNA vaccines. J Virol. 2006;80(4):1762–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23–68.

    Article  CAS  PubMed  Google Scholar 

  31. Khan WN. B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J Immunol. 2009;183(6):3561–7.

    Article  CAS  PubMed  Google Scholar 

  32. Mackay F, Mackay CR. The role of BAFF in B-cell maturation, T-cell activation and autoimmunity. Trends Immunol. 2002;23(3):113–5.

    Article  CAS  PubMed  Google Scholar 

  33. Schneider P. The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol. 2005;17(3):282–9.

    Article  CAS  PubMed  Google Scholar 

  34. Xing L, Schwarz EM, Boyce BF. Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev. 2005;208:19–29.

    Article  CAS  PubMed  Google Scholar 

  35. Mackay F, Kalled SL. TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol. 2002;14(6):783–90.

    Article  CAS  PubMed  Google Scholar 

  36. Kanagavelu SK, Snarsky V, Termini JM, Gupta S, Barzee S, Wright JA, et al. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine. Vaccine. 2012;30(4):691–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ahonen CL, Wasiuk A, Fuse S, Turk MJ, Ernstoff MS, Suriawinata AA, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111(6):3116–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol. 2005;6(8):769–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Stone GW, Barzee S, Snarsky V, Santucci C, Tran B, Kornbluth RS. Regression of established AB1 murine mesothelioma induced by peritumoral injections of CpG oligodeoxynucleotide either alone or in combination with poly(I:C) and CD40 ligand plasmid DNA. J Thorac Oncol. 2009;4(7):802–8.

    Article  PubMed  Google Scholar 

  40. Stone GW, Barzee S, Snarsky V, Santucci C, Tran B, Langer R, et al. Nanoparticle-delivered multimeric soluble CD40L DNA combined with toll-like receptor agonists as a treatment for melanoma. PLoS ONE. 2009;4(10):e7334.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Robinson HL. Prime boost vaccines power up in people. Nat Med. 2003;9(6):642–3.

    Article  CAS  PubMed  Google Scholar 

  42. Winstone N, Wilson AJ, Morrow G, Boggiano C, Chiuchiolo MJ, Lopez M, et al. Enhanced control of pathogenic simian immunodeficiency virus SIVmac239 replication in macaques immunized with an interleukin-12 plasmid and a DNA prime-viral vector boost vaccine regimen. J Virol. 2011;85(18):9578–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wang S, Kennedy JS, West K, Montefiori DC, Coley S, Lawrence J, et al. Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine. 2008;26(8):1098–110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Mattapallil JJ, Douek DC, Buckler-White A, Montefiori D, Letvin NL, Nabel GJ, et al. Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J Exp Med. 2006;203(6):1533–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu J, Yu Q, Stone GW, Yue FY, Ngai N, Jones RB, et al. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals. Vaccine. 2008;26(32):4062–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Stone GW, Barzee S, Snarsky V, Spina CA, Lifson JD, Pillai VK, et al. Macaque multimeric soluble CD40 ligand and GITR ligand constructs are immunostimulatory molecules in vitro. Clin Vaccine Immunol. 2006;13(11):1223–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol. 2002;169(11):6210–7.

    Article  CAS  PubMed  Google Scholar 

  48. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  49. Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R, et al. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16(20):6131–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Fennewald S, van Santen V, Kieff E. Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J Virol. 1984;51(2):411–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA. 1993;90(19):9150–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Stunz LL, Busch LK, Munroe ME, Sigmund CD, Tygrett LT, Waldschmidt TJ, et al. Expression of the cytoplasmic tail of LMP1 in mice induces hyperactivation of B lymphocytes and disordered lymphoid architecture. Immunity. 2004;21(2):255–66.

    Article  CAS  PubMed  Google Scholar 

  53. Panagopoulos D, Victoratos P, Alexiou M, Kollias G, Mosialos G. Comparative analysis of signal transduction by CD40 and the Epstein-Barr virus oncoprotein LMP1 in vivo. J Virol. 2004;78(23):13253–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zimber-Strobl U, Kempkes B, Marschall G, Zeidler R, Van Kooten C, Banchereau J, et al. Epstein-Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J. 1996;15(24):7070–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Lam N, Sugden B. CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal. 2003;15(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  56. Ishida T, Mizushima S, Azuma S, Kobayashi N, Tojo T, Suzuki K, et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem. 1996;271(46):28745–8.

    Article  CAS  PubMed  Google Scholar 

  57. Schultheiss U, Puschner S, Kremmer E, Mak TW, Engelmann H, Hammerschmidt W, et al. TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J. 2001;20(20):5678–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Izumi KM, Cahir McFarland ED, Ting AT, Riley EA, Seed B, Kieff ED. The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol. 1999;19(8):5759–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gupta S, Termini JM, Niu L, Kanagavelu SK, Schmidtmayerova H, Snarsky V, et al. EBV LMP1, a viral mimic of CD40, activates dendritic cells and functions as a molecular adjuvant when incorporated into an HIV vaccine. J Leukoc Biol. 2011;90(2):389–98.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci USA. 2004;101(20):7669–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Gupta S, Termini JM, Niu L, Kanagavelu SK, Rahmberg AR, Kornbluth RS, et al. Latent membrane protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines. Retrovirology. 2011;8:39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Izumi KM, Kieff ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA. 1997;94(23):12592–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  64. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc. 2009;4(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  65. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T. The SWISS-MODEL repository and associated resources. Nucleic Acids Res. 2009;37:D387–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Kopp J, Schwede T. The SWISS-MODEL repository: new features and functionalities. Nucleic Acids Res. 2006;34:D315–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by US National Institutes of Health grants R21 AI093294, R21 AI078834, and K22 AI068489 to G. Stone, Grant P30 AI073961 to the Miami Center for AIDS Research (CFAR) at the University of Miami Miller School of Medicine (PI Dr. Savita Pahwa), Florida Biomedical Bankhead-Coley Cancer Research Grant 1BF02 to G. Stone, American Cancer Society Institutional Research Grant 98-277-10, Sylvester Comprehensive Cancer Center (PI Dr. Joseph Rosenblatt) to G. Stone, Stanley J. Glaser Foundation Grant to G. Stone, and the NIH AIDS Reagent Program, Division of AIDS, NIAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey W. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Termini, J.M., Kanagavelu, S. et al. Design of vaccine adjuvants incorporating TNF superfamily ligands and TNF superfamily molecular mimics. Immunol Res 57, 303–310 (2013). https://doi.org/10.1007/s12026-013-8443-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8443-6

Keywords