Skip to main content

Advertisement

Log in

A canonical Vγ4Vδ4+ γδ T cell population with distinct stimulation requirements which promotes the Th17 response

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

We previously reported a subset of γδ T cells in mice which preferentially responds following intradermal immunization with collagen in complete Freund’s adjuvant (CFA). These cells express a nearly invariant “canonical” Vγ4Vδ4+ TCR. They are potent producers of IL-17A and promote the development of collagen-induced arthritis. In this study, we report that CFA emulsified with PBS alone (without collagen) is sufficient to induce a strong response of Vγ4Vδ4+ cells in the draining lymph nodes of DBA/1 and C57BL/6 mice and that the TCRs of the elicited Vγ4Vδ4+ cells in both strains heavily favor the canonical sequence. However, although both CFA and incomplete Freund’s adjuvant (which lacks the killed mycobacteria present in CFA) induced Vγ4Vδ4+ γδ T cell to expand, only CFA stimulated them to express IL-17A. The route of immunization was also critical, since intraperitoneal CFA induced only a weak response by these cells, whereas intradermal or subcutaneous CFA strongly stimulated them, suggesting that the canonical CFA-elicited Vγ4Vδ4+ cells are recruited from Vγ4+ γδ T cells normally found in the dermis. Their IL-17A response requires the toll-like receptor adapter protein MyD88, and their activation is enhanced by IFNγ, although αβ T cells need not be present. The CFA-elicited Vγ4Vδ4+ γδ T cells show a cytokine profile different from that of other previously described IL-17-producing γδ T cells. Finally, the Vγ4Vδ4+ subset appears to promote the Th17 αβ T cell response, suggesting its importance in mounting an effective immune response against certain pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’Brien RL, Roark CL, Jin N, Aydintug MK, French JD, Chain JL, et al. γδ T cell receptors—functional correlations. Immunol Rev. 2007;215:77–88.

    Article  PubMed  Google Scholar 

  2. Hayday AC. γδ T cells: a right time and a right place for a conserved third way of protection. Ann Rev Immunol. 2000;18:975–1026.

    Article  CAS  Google Scholar 

  3. O’Brien RL, Roark CL, Born WK. IL-17-producing γδ T cells. Eur J Immunol. 2009;39:662–6.

    Article  PubMed  Google Scholar 

  4. Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells. J Immunol. 2007;179:5576–83.

    PubMed  CAS  Google Scholar 

  5. Gray EE, Suzuki K, Cyster JG. Cutting edge: Identification of a motile IL-17-producing γδ T cell population in the dermis. J Immunol. 2011;186(11):6091–5.

    Article  PubMed  CAS  Google Scholar 

  6. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 2011;35(4):596–610.

    Article  PubMed  CAS  Google Scholar 

  7. Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, Cavanagh LL, et al. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J Exp Med. 2011;208(3):505–18.

    Article  PubMed  CAS  Google Scholar 

  8. Sunaga S, Maki K, Komagata Y, Miyazaki J-I, Ikuta K. Developmentally ordered V-J recombination in mouse T cell receptor γ locus is not perturbed by targeted deletion of the Vγ4 gene. J Immunol. 1997;158:4223–8.

    PubMed  CAS  Google Scholar 

  9. O’Brien RL, Yin X, Huber SA, Ikuta K, Born WK. Depletion of a γδ T cell subset can increase host resistance to a bacterial infection. J Immunol. 2000;165:6472–9.

    PubMed  Google Scholar 

  10. Pereira P, Gerber D, Huang SY, Tonegawa S. Ontogenic development and tissue distribution of Vγ1-expressing γ/δ T lymphocytes in normal mice. J Exp Med. 1995;182:1921–30.

    Article  PubMed  CAS  Google Scholar 

  11. Dent AL, Matis LA, Hooshmand F, Widacki SM, Bluestone JA, Hedrick SM. Self-reactive γδ T cells are eliminated in the thymus. Nature. 1990;343:714–9.

    Article  PubMed  CAS  Google Scholar 

  12. Goodman T, LeCorre R, Lefrancois L. A T-cell receptor γδ-specific monoclonal antibody detects a Vγ5 region polymorphism. Immunogenetics. 1992;35:65–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kubo RT, Born W, Kappler JW, Marrack P, Pigeon M. Characterization of a monoclonal antibody which detects all murine αβ T cell receptors. J Immunol. 1989;142:2736–42.

    PubMed  CAS  Google Scholar 

  14. Dialynas DP, Quan ZS, Wall KA, Pierres A, Quintans J, Loken MR, et al. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983;131:2445–51.

    PubMed  CAS  Google Scholar 

  15. Heilig JS, Tonegawa S. T-cell γ gene is allelically but not isotypically excluded and is not required in known functional T-cell subsets. Proc Natl Acad Sci USA. 1987;84:8070–4.

    Article  PubMed  CAS  Google Scholar 

  16. Arden B, Clark SP, Kabelitz D, Mak TW. Mouse T-cell receptor variable gene segment families. Immunogenetics. 1995;42:501–30.

    PubMed  CAS  Google Scholar 

  17. Kisielow J, Kopf M, Karjalainen K. SCART scavenger receptors identify a novel subset of adult γδ T cells. J Immunol. 2008;181(3):1710–6.

    PubMed  CAS  Google Scholar 

  18. Fink DR, Holm D, Schlosser A, Nielsen O, Latta M, Lozano F, et al. Elevated numbers of SCART1+ γδ T cells in skin inflammation and inflammatory bowel disease. Mol Immunol. 2010;47(9):1710–8.

    Article  PubMed  CAS  Google Scholar 

  19. Cui Y, Shao H, Lan C, Nian H, O’Brien RL, Born WK, et al. Major role of γδ T cells in the generation of IL-17 uveitogenic T cells. J Immunol. 2009;183:560–7.

    Article  PubMed  CAS  Google Scholar 

  20. French JD, Roark CL, Born WK, O’Brien RL. γδ T cell homeostasis is established in competition with αβ T cells and NK cells. Proc Natl Acad Sci USA. 2005;102:14741–6.

    Article  PubMed  CAS  Google Scholar 

  21. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–89.

    Article  PubMed  CAS  Google Scholar 

  22. Simonian PL, Wehmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP. γδ T cells protect against lung fibrosis via IL-22. J Exp Med. 2010;207:2239–53.

    Article  PubMed  CAS  Google Scholar 

  23. Peterman GM, Spencer C, Sperling AI, Bluestone JA. Role of γδ T cells in murine collagen-induced arthritis. J Immunol. 1993;151:6546–58.

    PubMed  CAS  Google Scholar 

  24. Stockinger B, Veldhoen M. Differentiation and function of Th17 cells. Curr Opin Immunol. 2007;19:281–6.

    Article  PubMed  CAS  Google Scholar 

  25. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol. 2007;178(7):4466–72.

    PubMed  CAS  Google Scholar 

  26. Nian H, Shao H, O’Brien RL, Born WK, Kaplan HJ, Sun D. Activated γδ T cells promote the activation of uveitogenic T cells and exacerbate EAU development. Invest Ophthalmol Vis Sci. 2011;52(8):5920–7.

    Article  PubMed  CAS  Google Scholar 

  27. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Ladeville EC, Mills KHG. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31:331–41.

    Article  PubMed  CAS  Google Scholar 

  28. Lalor SJ, Dungan LS, Sutton CE, Basdeo SA, Fletcher JM, Mills KH. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity. J Immunol. 2011;186(10):5738–48.

    Article  PubMed  CAS  Google Scholar 

  29. Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP. Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell. 1988;55:837–47.

    Article  PubMed  CAS  Google Scholar 

  30. Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, et al. Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature. 1990;343:754–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kim CH, Witherden DA, Havran WL. Characterization and TCR variable region gene use of mouse resident nasal γδ T lymphocytes. J Leuk Biol. 2008;84:1259–63.

    Article  CAS  Google Scholar 

  32. Grigoriadou K, Boucontet L, Pereira P. Most IL-4-producing γδ thymocytes of adult mice originate from fetal precursors. J Immunol. 2003;171:2413–20.

    PubMed  CAS  Google Scholar 

  33. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009;131:321–30.

    Article  Google Scholar 

  34. Hamada S, Umemura M, Shiono T, Hara H, Kishihara K, Tanaka K, et al. Importance of murine Vδ1 γδ T cells expressing IFNγ and IL-17A in innate protection against Listeria monocytogenes infection. Immunology. 2008;125:170–7.

    Article  PubMed  CAS  Google Scholar 

  35. Huber SA, Graveline DA, Born WK, O’Brien RL. Cytokine production by Vγ+ T cell subsets is an important factor determining CD4 Th-cell phenotype and susceptibility of BALB/c mice to coxsackievirus B3-induced myocarditis. J Virol. 2001;75:5860–9.

    Article  PubMed  CAS  Google Scholar 

  36. Mokuno Y, Matsuguchi T, Takano M, Nishimura H, Washizu J, Ogawa T, et al. Expression of toll-like receptor 2 on γδ T cells bearing invariant Vγ6/Vδ1 induced by Escherichia coli infection in mice. J Immunol. 2000;165(2):931–40.

    PubMed  CAS  Google Scholar 

  37. Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, et al. Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity. 2010;32(5):692–702.

    Article  PubMed  CAS  Google Scholar 

  38. Zuo A, Liang D, Shao H, Born WK, Kaplan HJ, Sun D. In vivo priming of IL-17(+) uveitogenic T cells is enhanced by Toll ligand receptor (TLR)2 and TLR4 agonists via γδ T cell activation. Mol Immunol. 2012;50(3):125–33.

    Article  PubMed  CAS  Google Scholar 

  39. Lin Y, Ritchea S, Logar A, Slight S, Messmer M, Rangel-Moreno J, et al. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity. 2009;31(5):799–810.

    Article  PubMed  CAS  Google Scholar 

  40. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007;8(4):369–77.

    Article  PubMed  CAS  Google Scholar 

  41. Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature. 2008;453(7198):1051–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Shirley Sobus and Josh Loomis for flow cytometry assistance, Philip Simonian (University of Colorado School of Medicine) for help with the Luminex cytokine assay and for scientific discussions, and Ross Kedl (National Jewish Health) for the B6.MyD88−/− mice. This work was supported by a research grant from the National Arthritis Research Foundation to CLR, and by NIH grants 2R01 AI 44920 and 1R56AI077594 to RLO, and by NIH grant 1R01 HL65410 to WKB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca L. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roark, C.L., Huang, Y., Jin, N. et al. A canonical Vγ4Vδ4+ γδ T cell population with distinct stimulation requirements which promotes the Th17 response. Immunol Res 55, 217–230 (2013). https://doi.org/10.1007/s12026-012-8364-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8364-9

Keywords

Navigation