Skip to main content

Advertisement

Log in

Effector functions of NLRs in the intestine: innate sensing, cell death, and disease

  • Immunology at Mount Sinai
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Nucleotide-binding and oligomerization domain-like receptors (NLRs) are central regulators of pathogen recognition, the induction of innate immune effectors and inflammation with utmost importance in human diseases such as inflammatory bowel diseases. Most NLRs are key mediators of inflammasome complexes that activate caspase-1 and drive proteolytic processing of pro-inflammatory cytokines; however, a few tightly regulate inflammasome-independent activation of nuclear factor-κB and mitogen-activated protein kinase pathways. NLR signaling has evolved in intestinal epithelial cells to avoid overactive inflammatory responses toward the resident microbiota and to preserve epithelial barrier integrity and functions by maintaining homeostasis. In the present review, I examine new insights into the role of the NLRs in antimicrobial defenses. I pay particular attention to the emerging role of these receptors in engaging a complex cross talk between cell death and innate immunity pathways. Furthermore, I discuss the physiological functions of the NLRs in shaping the innate immune response within the intestine, maintaining homeostasis, inducing tissue repair following injury and promoting tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Klein J. Self-nonself discrimination, histoincompatibility, and the concept of immunology. Immunogenetics. 1999;50(3–4):116–23.

    PubMed  CAS  Google Scholar 

  2. Rescigno M. Before they were gut dendritic cells. Immunity. 2009;31(3):454–6.

    PubMed  CAS  Google Scholar 

  3. Hand T, Belkaid Y. Microbial control of regulatory and effector T cell responses in the gut. Curr Opin Immunol. 2010;22(1):63–72.

    PubMed  CAS  Google Scholar 

  4. Clarke TB, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16(2):228–31.

    PubMed  CAS  Google Scholar 

  5. Xu J, Gordon JI. Honor thy symbionts. Proc Nat Acad Sci USA. 2003;100(18):10452–9.

    PubMed  CAS  Google Scholar 

  6. Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol. 2004;4(12):953–64.

    PubMed  CAS  Google Scholar 

  7. Bjerknes M, Cheng H. Intestinal epithelial stem cells and progenitors. Methods Enzymol. 2006;419:337–83.

    PubMed  CAS  Google Scholar 

  8. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140(6):859–70.

    PubMed  CAS  Google Scholar 

  9. Sato T, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    PubMed  CAS  Google Scholar 

  10. Yeretssian G, Labbe K, Saleh M. Molecular regulation of inflammation and cell death. Cytokine. 2008;43(3):380–90.

    PubMed  CAS  Google Scholar 

  11. Chen G, et al. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol. 2009;4:365–98.

    PubMed  CAS  Google Scholar 

  12. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11(1):9–20.

    PubMed  CAS  Google Scholar 

  13. Inohara N, et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J Biol Chem. 1999;274(21):14560–7.

    PubMed  CAS  Google Scholar 

  14. Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Curr Opin Plant Biol. 2004;7(4):391–9.

    PubMed  CAS  Google Scholar 

  15. Harton JA, et al. Cutting edge: CATERPILLER—a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol. 2002;169(8):4088–93.

    PubMed  CAS  Google Scholar 

  16. Ting JP, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28(3):285–7.

    PubMed  CAS  Google Scholar 

  17. Girardin SE, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.

    PubMed  CAS  Google Scholar 

  18. Inohara N, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem. 2003;278(8):5509–12.

    PubMed  CAS  Google Scholar 

  19. Chamaillard M, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol. 2003;4(7):702–7.

    PubMed  CAS  Google Scholar 

  20. Girardin SE, et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003;300(5625):1584–7.

    PubMed  CAS  Google Scholar 

  21. Benko S, Philpott DJ, Girardin SE. The microbial and danger signals that activate Nod-like receptors. Cytokine. 2008;43(3):368–73.

    PubMed  CAS  Google Scholar 

  22. Bertrand MJ, et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity. 2009;30(6):789–801.

    PubMed  CAS  Google Scholar 

  23. Abbott DW, et al. The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol. 2004;14(24):2217–27.

    PubMed  CAS  Google Scholar 

  24. Krieg A, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Nat Acad Sci USA. 2009;106(34):14524–9.

    PubMed  CAS  Google Scholar 

  25. Abbott DW, et al. Coordinated regulation of toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol Cell Biol. 2007;27(17):6012–25.

    PubMed  CAS  Google Scholar 

  26. Hasegawa M, et al. A critical role of RICK/RIP2 polyubiquitination in nod-induced NF-κB activation. EMBO J. 2008;27(2):373–83.

    PubMed  CAS  Google Scholar 

  27. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62.

    PubMed  CAS  Google Scholar 

  28. Hsu YM, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8(2):198–205.

    PubMed  CAS  Google Scholar 

  29. LeBlanc PM, et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe. 2008;3(3):146–57.

    PubMed  CAS  Google Scholar 

  30. Fritz JH, et al. Synergistic stimulation of human monocytes and dendritic cells by toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol. 2005;35(8):2459–70.

    PubMed  CAS  Google Scholar 

  31. Viala J, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol. 2004;5(11):1166–74.

    PubMed  CAS  Google Scholar 

  32. Watanabe T, et al. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Investig. 2010;120(5):1645–62.

    PubMed  CAS  Google Scholar 

  33. Hasegawa M, et al. Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J Immunol. 2011;186(8):4872–80.

    PubMed  CAS  Google Scholar 

  34. Berrington WR, et al. NOD1 and NOD2 regulation of pulmonary innate immunity to Legionella pneumophila. Eur J Immunol. 2010;40(12):3519–27.

    PubMed  CAS  Google Scholar 

  35. Frutuoso MS, et al. The pattern recognition receptors Nod1 and Nod2 account for neutrophil recruitment to the lungs of mice infected with Legionella pneumophila. Microbes Infect/Inst Pasteur. 2010;12(11):819–27.

    CAS  Google Scholar 

  36. Boneca IG, et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Nat Acad Sci USA. 2007;104(3):997–1002.

    PubMed  CAS  Google Scholar 

  37. Travassos LH, et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 2004;5(10):1000–6.

    PubMed  CAS  Google Scholar 

  38. Travassos LH, et al. Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J Biol Chem. 2005;280(44):36714–8.

    PubMed  CAS  Google Scholar 

  39. Kobayashi KS, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307(5710):731–4.

    PubMed  CAS  Google Scholar 

  40. Deshmukh HS, et al. Critical role of NOD2 in regulating the immune response to Staphylococcus aureus. Infect Immun. 2009;77(4):1376–82.

    PubMed  CAS  Google Scholar 

  41. Shimada K, et al. The NOD/RIP2 pathway is essential for host defenses against Chlamydophila pneumoniae lung infection. PLoS Pathog. 2009;5(4):e1000379.

    PubMed  Google Scholar 

  42. Opitz B, et al. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem. 2004;279(35):36426–32.

    PubMed  CAS  Google Scholar 

  43. Kim YG, et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity. 2011;34(5):769–80.

    PubMed  CAS  Google Scholar 

  44. Steimle V, et al. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994;265(5168):106–9.

    PubMed  CAS  Google Scholar 

  45. Nickerson K, et al. Dendritic cell-specific MHC class II transactivator contains a caspase recruitment domain that confers potent transactivation activity. J Biol Chem. 2001;276(22):19089–93.

    PubMed  CAS  Google Scholar 

  46. LeibundGut-Landmann S, et al. Mini-review: specificity and expression of CIITA, the master regulator of MHC class II genes. Eur J Immunol. 2004;34(6):1513–25.

    PubMed  CAS  Google Scholar 

  47. Moore CB, et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature. 2008;451(7178):573–7.

    PubMed  CAS  Google Scholar 

  48. Tattoli I, et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 2008;9(3):293–300.

    PubMed  CAS  Google Scholar 

  49. Xia X, et al. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity. 2011;34(6):843–53.

    PubMed  CAS  Google Scholar 

  50. Allen IC, et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity. 2011;34(6):854–65.

    PubMed  CAS  Google Scholar 

  51. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.

    PubMed  CAS  Google Scholar 

  52. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.

    PubMed  CAS  Google Scholar 

  53. Shao W, et al. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 2007;282(50):36321–9.

    PubMed  CAS  Google Scholar 

  54. Bruey JM, et al. PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-κB and caspase-1 activation in macrophages. J Biol Chem. 2004;279(50):51897–907.

    PubMed  CAS  Google Scholar 

  55. Grenier JM, et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett. 2002;530(1–3):73–8.

    PubMed  CAS  Google Scholar 

  56. Wang L, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-κB and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277(33):29874–80.

    PubMed  CAS  Google Scholar 

  57. Arthur JC, et al. Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J Immunol. 2010;185(8):4515–9.

    PubMed  CAS  Google Scholar 

  58. Zaki MH, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649–60.

    PubMed  CAS  Google Scholar 

  59. Elinav E, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57.

    PubMed  CAS  Google Scholar 

  60. Faustin B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25(5):713–24.

    PubMed  CAS  Google Scholar 

  61. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet. 2006;38(2):240–4.

    PubMed  CAS  Google Scholar 

  62. Hsu LC, et al. A NOD2–NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Nat Acad Sci USA. 2008;105(22):7803–8.

    PubMed  CAS  Google Scholar 

  63. Jin Y, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356(12):1216–25.

    PubMed  CAS  Google Scholar 

  64. Mariathasan S, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32.

    PubMed  CAS  Google Scholar 

  65. McNeela EA, et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 2010;6(11):e1001191.

    PubMed  Google Scholar 

  66. Harder J, et al. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-κB activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol. 2009;183(9):5823–9.

    PubMed  CAS  Google Scholar 

  67. Craven RR, et al. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One. 2009;4(10):e7446.

    PubMed  Google Scholar 

  68. Gross O, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459(7245):433–6.

    PubMed  CAS  Google Scholar 

  69. Hise AG, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5(5):487–97.

    PubMed  CAS  Google Scholar 

  70. Kumar H, et al. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol. 2009;183(12):8061–7.

    PubMed  CAS  Google Scholar 

  71. Kanneganti TD, et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006;440(7081):233–6.

    PubMed  CAS  Google Scholar 

  72. Muruve DA, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452(7183):103–7.

    PubMed  CAS  Google Scholar 

  73. Thomas PG, et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity. 2009;30(4):566–75.

    PubMed  CAS  Google Scholar 

  74. Allen IC, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–65.

    PubMed  CAS  Google Scholar 

  75. Ichinohe T, et al. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206(1):79–87.

    PubMed  CAS  Google Scholar 

  76. Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol. 2010;11(5):404–10.

    PubMed  CAS  Google Scholar 

  77. Kahlenberg JM, Dubyak GR. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol. 2004;286(5):C1100–8.

    PubMed  CAS  Google Scholar 

  78. Kanneganti TD, et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of toll-like receptor signaling. Immunity. 2007;26(4):433–43.

    PubMed  CAS  Google Scholar 

  79. Martinon F, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.

    PubMed  CAS  Google Scholar 

  80. Dostert C, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7.

    PubMed  CAS  Google Scholar 

  81. Cassel SL, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Nat Acad Sci USA. 2008;105(26):9035–40.

    PubMed  CAS  Google Scholar 

  82. Hornung V, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.

    PubMed  CAS  Google Scholar 

  83. Eisenbarth SC, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–6.

    PubMed  CAS  Google Scholar 

  84. Halle A, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65.

    PubMed  CAS  Google Scholar 

  85. Petrilli V, et al. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol. 2007;19(6):615–22.

    PubMed  CAS  Google Scholar 

  86. Cruz CM, et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282(5):2871–9.

    PubMed  CAS  Google Scholar 

  87. Zhou R, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40.

    PubMed  CAS  Google Scholar 

  88. Mariathasan S, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213–8.

    PubMed  CAS  Google Scholar 

  89. Suzuki T, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 2007;3(8):e111.

    PubMed  Google Scholar 

  90. Zamboni DS, et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol. 2006;7(3):318–25.

    PubMed  CAS  Google Scholar 

  91. Amer A, et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem. 2006;281(46):35217–23.

    PubMed  CAS  Google Scholar 

  92. Brodsky IE, et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe. 2010;7(5):376–87.

    PubMed  CAS  Google Scholar 

  93. Franchi L, et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol. 2007;37(11):3030–9.

    PubMed  CAS  Google Scholar 

  94. Miao EA, et al. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Nat Acad Sci USA. 2008;105(7):2562–7.

    PubMed  CAS  Google Scholar 

  95. Sutterwala FS, et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med. 2007;204(13):3235–45.

    PubMed  CAS  Google Scholar 

  96. Poyet JL, et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem. 2001;276(30):28309–13.

    PubMed  CAS  Google Scholar 

  97. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65.

    PubMed  CAS  Google Scholar 

  98. Lightfield KL, et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol. 2008;9(10):1171–8.

    PubMed  CAS  Google Scholar 

  99. Fortier A, et al. Restriction of Legionella pneumophila replication in macrophages requires concerted action of the transcriptional regulators Irf1 and Irf8 and nod-like receptors Naip5 and Nlrc4. Infect Immun. 2009;77(11):4794–805.

    PubMed  CAS  Google Scholar 

  100. Kofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 2011;477(7366):592–5.

    PubMed  CAS  Google Scholar 

  101. Zhao Y, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.

    PubMed  CAS  Google Scholar 

  102. Stehlik C, Dorfleutner A. COPs and POPs: modulators of inflammasome activity. J Immunol. 2007;179(12):7993–8.

    PubMed  CAS  Google Scholar 

  103. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117(5):561–74.

    PubMed  CAS  Google Scholar 

  104. Humke EW, et al. ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell. 2000;103(1):99–111.

    PubMed  CAS  Google Scholar 

  105. Druilhe A, et al. Regulation of IL-1beta generation by pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ. 2001;8(6):649–57.

    PubMed  CAS  Google Scholar 

  106. Saleh M, et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature. 2006;440(7087):1064–8.

    PubMed  CAS  Google Scholar 

  107. Fischer H, et al. Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun. 2002;293(2):722–6.

    PubMed  CAS  Google Scholar 

  108. Yeretssian G, et al. Gender differences in expression of the human caspase-12 long variant determines susceptibility to Listeria monocytogenes infection. Proc Nat Acad Sci USA. 2009;106(22):9016–20.

    PubMed  CAS  Google Scholar 

  109. Saleh M, et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature. 2004;429(6987):75–9.

    PubMed  CAS  Google Scholar 

  110. Xue Y, et al. Spread of an inactive form of caspase-12 in humans is due to recent positive selection. Am J Hum Genet. 2006;78(4):659–70.

    PubMed  CAS  Google Scholar 

  111. Labbe K, et al. Caspase-12 dampens the immune response to malaria independently of the inflammasome by targeting NF-κB signaling. J Immunol. 2010;185(9):5495–502.

    PubMed  CAS  Google Scholar 

  112. Razmara M, et al. CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem. 2002;277(16):13952–8.

    PubMed  CAS  Google Scholar 

  113. Rosenstiel P, et al. A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways. Proc Nat Acad Sci USA. 2006;103(9):3280–5.

    PubMed  CAS  Google Scholar 

  114. Fairbrother WJ, et al. The PYRIN domain: a member of the death domain-fold superfamily. Prot Sci Publ Prot Soc. 2001;10(9):1911–8.

    CAS  Google Scholar 

  115. Stehlik C, et al. The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-κB and pro-caspase-1 regulation. Biochem J. 2003;373(Pt 1):101–13.

    PubMed  CAS  Google Scholar 

  116. Bedoya F, Sandler LL, Harton JA. Pyrin-only protein 2 modulates NF-κB and disrupts ASC: CLR interactions. J Immunol. 2007;178(6):3837–45.

    PubMed  CAS  Google Scholar 

  117. Dorfleutner A, et al. A Shope fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes. 2007;35(3):685–94.

    PubMed  CAS  Google Scholar 

  118. Guarda G, et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature. 2009;460(7252):269–73.

    PubMed  CAS  Google Scholar 

  119. Cui J, et al. NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell. 2010;141(3):483–96.

    PubMed  CAS  Google Scholar 

  120. Benko S, et al. NLRC5 limits the activation of inflammatory pathways. J Immunol. 2010;185(3):1681–91.

    PubMed  CAS  Google Scholar 

  121. Bruey JM, et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007;129(1):45–56.

    PubMed  CAS  Google Scholar 

  122. Greten FR, et al. NF-κB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 2007;130(5):918–31.

    PubMed  CAS  Google Scholar 

  123. Opferman JT. Apoptosis in the development of the immune system. Cell Death Differ. 2008;15(2):234–42.

    PubMed  CAS  Google Scholar 

  124. Henson PM. Dampening inflammation. Nat Immunol. 2005;6(12):1179–81.

    PubMed  CAS  Google Scholar 

  125. Riedl SJ, Salvesen GS. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol. 2007;8(5):405–13.

    PubMed  CAS  Google Scholar 

  126. Nakahira K, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30.

    PubMed  CAS  Google Scholar 

  127. Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    PubMed  CAS  Google Scholar 

  128. Bauernfeind F, et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 2011;187(2):613–7.

    PubMed  CAS  Google Scholar 

  129. Cooney R, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16(1):90–7.

    PubMed  CAS  Google Scholar 

  130. Travassos LH, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11(1):55–62.

    PubMed  CAS  Google Scholar 

  131. Saitoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–8.

    PubMed  CAS  Google Scholar 

  132. Cain K, et al. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem. 2001;276(45):41985–90.

    PubMed  CAS  Google Scholar 

  133. Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta. 2008;1777(7–8):877–81.

    PubMed  CAS  Google Scholar 

  134. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51.

    PubMed  CAS  Google Scholar 

  135. Yuan XM, et al. Lysosomal destabilization in p53-induced apoptosis. Proc Nat Acad Sci USA. 2002;99(9):6286–91.

    PubMed  CAS  Google Scholar 

  136. Green DR. At the gates of death. Cancer Cell. 2006;9(5):328–30.

    PubMed  CAS  Google Scholar 

  137. Faustin B, et al. Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Nat Acad Sci USA. 2009;106(10):3935–40.

    PubMed  CAS  Google Scholar 

  138. Yeretssian G, et al. Non-apoptotic role of BID in inflammation and innate immunity. Nature. 2011;474(7349):96–9.

    PubMed  CAS  Google Scholar 

  139. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621.

    PubMed  CAS  Google Scholar 

  140. Frank DN, Pace NR. Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol. 2008;24(1):4–10.

    PubMed  CAS  Google Scholar 

  141. Bouskra D, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10.

    PubMed  CAS  Google Scholar 

  142. Mazmanian SK, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.

    PubMed  CAS  Google Scholar 

  143. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–85.

    PubMed  CAS  Google Scholar 

  144. Haverson K, et al. Immune development in jejunal mucosa after colonization with selected commensal gut bacteria: a study in germ-free pigs. Vet Immunol Immunopathol. 2007;119(3–4):243–53.

    PubMed  CAS  Google Scholar 

  145. Hapfelmeier S, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328(5986):1705–9.

    PubMed  CAS  Google Scholar 

  146. Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol. 2006;6(4):329–33.

    PubMed  CAS  Google Scholar 

  147. Atarashi K, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.

    PubMed  CAS  Google Scholar 

  148. Ivanov II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    PubMed  CAS  Google Scholar 

  149. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.

    PubMed  CAS  Google Scholar 

  150. Petnicki-Ocwieja T, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Nat Acad Sci USA. 2009;106(37):15813–8.

    PubMed  CAS  Google Scholar 

  151. Rehman A, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60(10):1354–62.

    PubMed  CAS  Google Scholar 

  152. Hirota SA, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2011;17(6):1359–72.

    PubMed  Google Scholar 

  153. Villani AC, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet. 2009;41(1):71–6.

    PubMed  CAS  Google Scholar 

  154. McGovern DP, et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet. 2005;14(10):1245–50.

    PubMed  CAS  Google Scholar 

  155. Lu WG, et al. Association of NOD1 (CARD4) insertion/deletion polymorphism with susceptibility to IBD: a meta-analysis. World J Gastroenterol. 2010;16(34):4348–56.

    PubMed  CAS  Google Scholar 

  156. Hasegawa M, et al. Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J Biol Chem. 2006;281(39):29054–63.

    PubMed  CAS  Google Scholar 

  157. Chen GY, et al. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 2008;68(24):10060–7.

    PubMed  CAS  Google Scholar 

  158. Dupaul-Chicoine J, et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 2010;32(3):367–78.

    PubMed  CAS  Google Scholar 

  159. Zaki MH, et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32(3):379–91.

    PubMed  CAS  Google Scholar 

  160. Allen IC, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.

    PubMed  CAS  Google Scholar 

  161. Salcedo R, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207(8):1625–36.

    PubMed  CAS  Google Scholar 

  162. Zaki MH, et al. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 2010;185(8):4912–20.

    PubMed  CAS  Google Scholar 

  163. Bauer C, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 2010;59(9):1192–9.

    PubMed  CAS  Google Scholar 

  164. Hu B, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Nat Acad Sci USA. 2010;107(50):21635–40.

    PubMed  Google Scholar 

  165. Chen GY, et al. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011;186(12):7187–94.

    PubMed  CAS  Google Scholar 

  166. Normand S, et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Nat Acad Sci USA. 2011;108(23):9601–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Garabet Yeretssian thanks his laboratory members for reading and commenting on this manuscript and N. Fodil-Cornu for critical reading of the manuscript, comments, and discussions. Work in Garabet Yeretssian’s laboratory is supported by the Helmsley Foundation. The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garabet Yeretssian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeretssian, G. Effector functions of NLRs in the intestine: innate sensing, cell death, and disease. Immunol Res 54, 25–36 (2012). https://doi.org/10.1007/s12026-012-8317-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8317-3

Keywords

Navigation