Skip to main content

Advertisement

Log in

Histological changes in lingual striated muscle tissue of human cadavers to estimate the postmortem interval

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Although there are physiological methods to determine the postmortem interval (PMI), interval forensic histopathology can be applied to obtain accuracy. The aim was to describe the histological changes in human lingual striated musculature at different PMI. Seven groups were formed according to increasing PMI of 6, 12, 24, 48, 72, 96 and 120 h postmortem (PM). Each group was made up of 16 samples of tongues from each cadaver. The samples were fixed in buffered formaldehyde at 10% and processed for embedding in paraplast. Section 5 μm thick were cut and dyed with H&E for analysis. The study was approved by the Bioethics Committee of the Universidad San Francisco de Quito, Ecuador. The histological changes in the striated muscle cells of the tongue were associated with the different PMI. From 6 to 24 h PM, there were initial changes in the cellular and nuclear morphology. At 48 h PM, at least 50% of the samples presented poorly conserved and reduced muscle striations. At 72 h PM, 100% of the cases presented myofibers with altered morphology, cytoplasmic vacuoles (93.75%), edema (68.55%) and pyknosis (93.75%). At 96 and 120 h PM, the myofibers presented pyknotic nuclei, and they were absent in the rest. The changes in the histology of the human lingual striated muscle make it possible to estimate the PMI, either in the early phase (0—72 h) or the late phase (92–120 h). However, further research is needed to verify, refine and expand on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Donaldson AE, Lamont IL. Estimation of post-mortem interval using biochemical markers. Aust J Forensic Sci. 2014;46(1):8–26. https://doi.org/10.1080/00450618.2013.784356.

    Article  Google Scholar 

  2. Madea B. Methods for determining time of death. Forensic Sci Med Pathol. 2016;12:451–85. https://doi.org/10.1007/s12024-016-9776-y.

    Article  PubMed  Google Scholar 

  3. Mahalakshmi V, Gururaj N, Sathya R, Sabarinath T, Sivapathasundharam B, Kalaiselvan S. Assessment of histological changes in antemortem gingival tissues fixed at various time intervals: A method of estimation of postmortem interval. J Forensic Dent Sci. 2016;8(2):114. https://doi.org/10.4103/0975-1475.186373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fais P, Mazzotti MC, Teti G, Boscolo-Berto R, Pelotti S, Falconi M. HIF1a protein and mRNA expression as a new marker for post mortem interval estimation in human gingival tissue. J Anat. 2028;232(6):1031-1037. https://doi.org/10.1111/joa.12800

  5. Gerometta R, Larroza GO, Pimpinella P, Genero S. Variación de la presión intraocular en función del tiempo: contribución a la determinación del verdadero intervalo de muerte ( VIM ). Rev Mex Med Forense. 2019;4(1):15–23. https://doi.org/10.25009/revmedforense.v4i1.2603

  6. Pradeep GL, Uma K, Sharada P, Prakash N. Histological assessment of cellular changes in gingival epithelium in ante-mortem and post-mortem specimens. J Forensic Dental Sci. 2009;1(2):61. https://doi.org/10.4103/0974-2948.60375.

    Article  Google Scholar 

  7. Matuszewski S, Konwerski S, Frątczak K, Szafałowicz M. Effect of body mass and clothing on decomposition of pig carcasses. Int J Legal Med. 2014;128(6):1039–48. https://doi.org/10.1007/s00414-014-0965-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suckling JK, Spradley MK, Godde K. A longitudinal study on human outdoor decomposition in Central Texas. J Forensic Sci. 2015;61(1):19–25. https://doi.org/10.1111/1556-4029.12892.

    Article  PubMed  Google Scholar 

  9. Johnson AP, Mikac MK, Wallman JF. Thermogenesis in decomposing carcasses. Forensic Sci Int. 2013;231(1–3):271–7. https://doi.org/10.1016/j.forsciint.2013.05.031.

    Article  PubMed  Google Scholar 

  10. Campobasso CP, Di Vella G, Introna F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int. 2001;120(1–2):18–27. https://doi.org/10.1016/S0379-0738(01)00411-X.

    Article  CAS  PubMed  Google Scholar 

  11. Simmons T, Adlam RE, Moffatt C. Debugging decomposition data—comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J Forensic Sci. 2010;50(1):8–13. https://doi.org/10.1111/j.1556-4029.2009.01206.x.

    Article  Google Scholar 

  12. Spicka A, Johnson R, Bushing J, Higley LG, Carter DO. Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci Int. 2011;209(1–3):80–5. https://doi.org/10.1016/j.forsciint.2011.01.002.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly JA, van der Linde TC, Anderson GS. The influence of clothing and wrapping on carcass decomposition and arthropod succession during the warmer seasons in Central South Africa. J Forensic Sci. 2009;54(5):1105–12. https://doi.org/10.1111/j.1556-4029.2009.01113.x.

    Article  PubMed  Google Scholar 

  14. Shrestha R, Kanchan T, Krishan K. Methods of estimation of time since death. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 20, 2021. https://www.ncbi.nlm.nih.gov/books/NBK549867/

  15. Meurs J, Krap T, Duijst W. Evaluation of postmortem biochemical markers: Completeness of data and assessment of implication in the field. Sci Justice. 2019;59(2):177–80. https://doi.org/10.1016/j.scijus.2018.09.002.

    Article  PubMed  Google Scholar 

  16. Madea B. Importance of supravitality in forensic medicine. Forensic Sci Int. 1994;69(3):221–41. https://doi.org/10.1016/0379-0738(94)90386-7.

    Article  CAS  PubMed  Google Scholar 

  17. Bardale RV, Tumram NK, Dixit PG, Deshmukh AY. Evaluation of histologic changes of the skin in postmortem period. Am J Forensic Med Pathol. 2012;33(4):357–61. https://doi.org/10.1097/PAF.0b013e31822c8f21.

    Article  PubMed  Google Scholar 

  18. Boehm J, Schmidt U, Porsche M, Veeck J, Schaefer HE. Post-mortem analysis of bone marrow osteoclasts using tartrate-resistant acid phosphatase staining: does histochemistry work and correlate with time since death? J Clin Pathol. 2012;65(11):1013–8. https://doi.org/10.1136/jclinpath-2012-200854.

    Article  PubMed  Google Scholar 

  19. Yadav A, Angadi PV, Hallikerimath S, Kale A, Shetty A. Applicability of histologic post-mortem changes of labial mucosa in estimation of time of death - A preliminary study. Aust J Forensic Sci. 2012;44(4):343–52. https://doi.org/10.1080/00450618.2012.674977.

    Article  Google Scholar 

  20. Yadav AB, Angadi PV, Kale AD, Yadav SK. Histological assessment of cellular changes in postmortem gingival specimens for estimation of time since death. J Forensic Odontostomatol. 2015;33(1):19–26.

    PubMed  PubMed Central  Google Scholar 

  21. Rajkumari S, Mensudar R, Naveen N, Thayumanavan B. Histopathological assessment of autopsied salivary gland tissue to estimate the post mortem interval – A cross sectional observational study. Indian J Forensic Med Toxicol. 2021;15(1):309–313. https://doi.org/10.37506/ijfmt.v15i1.13424

  22. Bhuyan L, Behura SS, Dash KC, Mishra P, Mahapatra N, Panda A. Characterization of histomorphological and microbiological changes in tooth pulp to assess post-mortem interval: an observational study. Egypt J Forensic Sci. 2020;10:19. https://doi.org/10.1186/s41935-020-00193-4.

    Article  Google Scholar 

  23. Kovarik C, Stewart D, Cockerell C. Gross and histologic postmortem changes of the skin. Am J Forensic Med Pathol. 2005;26(4):305–8. https://doi.org/10.1097/01.paf.0000188087.18273.d2.

    Article  PubMed  Google Scholar 

  24. Madea B, Ortmann J, Doberentz E. Estimation of the time since death–even methods with a low precision may be helpful in forensic casework. Forensic Sci Int. 2019;302: 109879. https://doi.org/10.1016/j.forsciint.2019.109879.

    Article  CAS  PubMed  Google Scholar 

  25. Guerrero-Urbina C, del Sol M, Fonseca GM. Métodos histoquímicos e inmunohistoquímicos para la estimación del intervalo postmortem en tejidos humanos: Una revisión. Int J Morphol. 2020;38(2):241–6. https://doi.org/10.4067/S0717-95022020000200241.

    Article  Google Scholar 

  26. Miller MA, Zachary JF. Mechanisms and morphology of cellular injury, adaptation, and death. Pathologic Basis of Veterinary Disease. 2017;2017:2-43.e19. https://doi.org/10.1016/B978-0-323-35775-3.00001-1.

    Article  Google Scholar 

  27. Kumar V, Abbas A, Aster J. Robbins basic pathology, 10th ed. Chapter 2. Pensilvania: Elsevier. 2017.

  28. Stevens A, Lowe J. Texto y atlas de anatomía patológica. Madrid: Harcourt Brace; 1994. p. 23–33.

    Google Scholar 

  29. Rajkumari S, Mensudar R, Naveen N, Thayumanavan B, Thammaiah S. Estimation of postmortem death interval from autopsied tongue tissue: A cross-sectional study. J Oral Maxillofac Pathol. 2021;24:568–71.

    PubMed Central  Google Scholar 

  30. Dettmeyer RB. The role of histopathology in forensic practice: An overview. Forensic Sci Med Pathol. 2014;10(3):401-12. https://doi.org/10.1007/s12024-014-9536-9

Download references

Acknowledgements

We wish to thank Hospital Quito No. 1 Policía Nacional of Ecuador and in particular the personnel in the Pathological Anatomy Laboratory and Dr. Francisco Estrella for his collaboration with the scientific research in the search to improve the methods that contribute to the investigation and to respond to the unknowns raised by the judicial and police investigators and by the relatives of the corpses. We give our thanks to Dr. Johanna Latta, to the technical professionals Lic. Luis Mamarandí, and Police Second Sergeant Elena Pérez for their ample professional spirit and their desire to expand knowledge for the benefit of society.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

C. Guerrero-Urbina: conceptualization, methodology, validation, investigation, writing of manuscript, review, and editing. M. Fors: validation, investigation, formal analysis, writing of manuscript, and review. B. Vásquez: methodology, validation, investigation, writing of manuscript, review, and editing. G. Fonseca: conceptualization, methodology, formal analysis, investigation, writing of manuscript, and review. M. Rodríguez-Guerrero: data collection, validation, investigation, writing of manuscript, and review.

Corresponding author

Correspondence to Bélgica Vásquez.

Ethics declarations

Ethics approval

Ethical approval was granted by the Bioethics Committee of the Universidad San Francisco de Quito, reference number: COD. P2019-074E. Permission was granted by the National Directorate of the Criminal Investigation Service and of the National Coordination of Criminology Services, Legal and Forensic Medicine. The study was conducted according to the Declaration of Helsinki.

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Urbina, C., Fors, M., Vásquez, B. et al. Histological changes in lingual striated muscle tissue of human cadavers to estimate the postmortem interval. Forensic Sci Med Pathol 19, 16–23 (2023). https://doi.org/10.1007/s12024-022-00495-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-022-00495-0

Keywords

Navigation