Abstract
Pediatric papillary thyroid carcinoma (PTC) has unique features but requires further genetic investigation. Moreover, there has been increasing concern about the risk for pediatric PTC in Japan after the Fukushima accident. This study aims to evaluate the frequencies of BRAF and TERT promoter mutations and to examine their significance in non-radiation-associated pediatric PTCs in Japan. We enrolled 81 pediatric PTC patients aged ≤20 years. The control group included 91 adult PTCs from patients >20 years old. BRAF and TERT mutations were analyzed by allele-specific-PCR and/or Sanger sequencing. Compared with adult PTCs, pediatric PTCs exhibited larger tumor size, more frequent lymph node metastasis, and less classical histology. The prevalence of BRAF V600E in pediatric PTCs was 54% and significantly lower than that in adults of 85%. In the pediatric PTCs, BRAF V600E was positively associated with older age, classical histology, and the lymph node metastasis but independent from other clinicopathological factors. TERT mutations were identified in 13% of adults and in none of the pediatric PTCs. In conclusion, pediatric PTCs are characterized by more advanced clinicopathological features, lower BRAF V600E frequency, and absence of TERT mutation. The BRAF V600E frequency in this study is similar to the reported BRAF V600E frequency in the ultrasonographically screened pediatric PTCs in Fukushima.


Similar content being viewed by others
References
Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21 Suppl 2:S37-S43, 2008.
LiVolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol 24 Suppl 2(S2):S1–S9, 2011.
Giuffrida D, Scollo C, Pellegriti G, Lavenia G, Iurato MP, Pezzin V, et al. Differentiated thyroid cancer in children and adolescents. J Endocrinol Invest 25:18–24, 2011.
Nikiforova MN, Ciampi R, Salvatore G, Santoro M, Gandhi M, Knauf JA, et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett 209:1–6, 2004.
Penko K, Livezey J, Fenton C, Patel A, Nicholson D, Flora M, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid 15:320–325, 2005.
Rosenbaum E, Hosler G, Zahurak M, Cohen Y, Sidransky D, Westra WH. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod Pathol 18:898–902, 2005.
Ito Y, Kihara M, Takamura Y, Kobayashi K, Miya A, Hirokawa M, et al. Prognosis and prognostic factors of papillary thyroid carcinoma in patients under 20 years. Endocr J 59:539–545, 2012.
Sassolas G, Hafdi-Nejjari Z, Ferraro A, Decaussin-Petrucci M, Rousset B, Borson-Chazot F, et al. Oncogenic alterations in papillary thyroid cancers of young patients. Thyroid 22:17–26, 2012.
Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope 124:E389-E393, 2014.
Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, et al. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer 61:1168–1172, 2014
Cordioli MICV, Moraes L, Cury AN, Cerutti JM. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer 22:R311–324, 2015.
Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd R V. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol 25:1478–1484, 2001.
Sheu S-Y, Schwertheim S, Worm K, Grabellus F, Schmid KW. Diffuse sclerosing variant of papillary thyroid carcinoma: lack of BRAF mutation but occurrence of RET/PTC rearrangements. Mod Pathol 20:779–787, 2007.
Pillai S, Gopalan V, Smith R a, Lam AK-Y. Diffuse sclerosing variant of papillary thyroid carcinoma-an update of its clinicopathological features and molecular biology. Crit Rev Oncol Hematol 94:64–73, 2014
Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306, 2006.
Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13:184–199, 2013.
The Cancer Genome Atral Research Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 159:676–690, 2014.
Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 7:569–580, 2011.
Kumagai A, Namba H, Saenko V a., Ashizawa K, Ohtsuru A, Ito M, et al. Low frequency of BRAFT1796A mutations in childhood thyroid carcinomas. J Clin Endocrinol Metab 89:4280–4284, 2004.
Onder S, Ozturk Sari S, Yegen G, Sormaz IC, Yilmaz I, Poyrazoglu S, et al. Classic Architecture with Multicentricity and Local Recurrence, and Absence of TERT Promoter Mutations are Correlates of BRAF V600E Harboring Pediatric Papillary Thyroid Carcinomas. Endocr Pathol 27:153–161, 2016
Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther 10:385–394, 2011.
Landa I, Ganly I, Chan T a., Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent Somatic TERT Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease. J Clin Endocrinol Metab 98:E1562–1566, 2013.
Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 33:4978–4984, 2014.
Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer.20:603–610, 2013.
Alzahrani AS, Qasem E, Murugan AK, Al-Hindi HN, AlKhafaji D, Almohanna M, et al. Uncommon TERT Promoter Mutations in Pediatric Thyroid Cancer. Thyroid. 26:235–241, 2016.
Cardis E, Howe G, Ron E, Bebeshko V, Bogdanova T, Bouville A, et al. Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot. 26(2):127–40, 2006.
Mitsutake N, Fukushima T, Matsuse M, Rogounovitch T, Saenko V, Uchino S, et al. BRAFV600E mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. Sci Rep 16976, 2015
Nagataki S, Takamura N. A review of the Fukushima nuclear reactor accident: radiation effects on the thyroid and strategies for prevention. Curr Opin Endocrinol Diabetes Obes 21:384–393, 2014.
LiVolsi VA, Albores-Saavedra J, Asa SL, Baloch ZW, Sobrinho-Simões M, Wenig B et al. Papillary carcinoma, in DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds): Pathology and genetics of tumours of endocrine organs. Lyon: IARC; 2004. pp 57–66.
Harach HR, Williams ED. Childhood thyroid cancer in England and Wales. Br J Cancer 72:777–783, 1995.
Warden DW, Ondrejka S, Lin J, Durkin L, Bodo J, Hsi ED. Phospho-ERK(THR202/Tyr214) is overexpressed in hairy cell leukemia and is a useful diagnostic marker in bone marrow trephine sections. Am J Surg Pathol 37:305–308, 2013
Oishi N, Kondo T, Mochizuki K. Localized Langerhans cell histiocytosis of the thymus with BRAF V600E mutation : a case report with immunohistochemical and genetic analyses. Hum Pathol 45:1302–1305, 2014
Xu B, Yoshimoto K, Miyauchi A, Kuma S, Mizusawa N, Hirokawa M, et al. Cribriform-morular variant of papillary thyroid carcinoma: a pathological and molecular genetic study with evidence of frequent somatic mutations in exon 3 of the beta-catenin gene. J Pathol. 199:58–67, 2003.
Kwon MJ, Rho Y-S, Jeong JC, Shin HS, Lee JS, Cho SJ, et al. Cribriform-morular variant of papillary thyroid carcinoma: a study of 3 cases featuring the PIK3CA mutation. Hum Pathol 46:1180–1188, 2015
Song YS, Lim JA, Park YJ. Mutation Profile of Well-Differentiated Thyroid Cancer in Asians. Endocrinol Metab 30:252–262, 2015.
Finkelstein A, Levy GH, Hui P, Prasad A, Virk R, Chhieng DC, et al. Papillary thyroid carcinomas with and without BRAF V600E mutations are morphologically distinct. Histopathology 60:1052–1059, 2012.
Koperek O, Kornauth C, Capper D, Berghoff AS, Asari R, Niederle B, et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol 36:844–850, 2012.
Virk RK, Theoharis CG a, Prasad A, Chhieng D, Prasad ML. Morphology predicts BRAFV600E mutation in papillary thyroid carcinoma: an interobserver reproducibility study. Virchows Arch 464:435–442, 2014.
Li C, Lee KC, Schneider EB, Zeiger MA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 97:4559–4570, 2012.
Lim JY, Hong SW, Lee YS, Kim B-W, Park CS, Chang H-S, et al. Clinicopathologic implications of the BRAF(V600E) mutation in papillary thyroid cancer: a subgroup analysis of 3130 cases in a single center. Thyroid 23:1423–1430, 2013
Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309:1493–1501, 2013
Ito Y, Yoshida H, Maruo R, Morita S, Takano T, Hirokawa M, et al. BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J 56:89–97, 2009
Gouveia C, Can NT, Bostrom A, Grenert JP, van Zante A, Orloff LA. Lack of association of BRAF mutation with negative prognostic indicators in papillary thyroid carcinoma: the University of California, San Francisco, experience. JAMA Otolaryngol Head Neck Surg 139:1164–1170, 2013
Li C, Aragon Han P, Lee KC, Lee LC, Fox AC, Beninato T, et al. Does BRAF V600E Mutation Predict Aggressive Features in Papillary Thyroid Cancer? Results From Four Endocrine Surgery Centers. J Clin Endocrinol Metab. 98:3702–3712, 2013
Cheng S, Serra S, Mercado M, Ezzat S, Asa SL. A High-Throughput Proteomic Approach Provides Distinct Signatures for Thyroid Cancer Behavior. Clin Cancer Res 17:2385–2394, 2011
Acknowledgments
We thank Ms. Wakaba Iha, Ms. Miyuki Ito, Ms. Mikiko Yoda, and Mr. Yoshihito Koshimizu for technical support and Ms. Kayoko Kono for executive assistance.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This study was funded by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Number 25293087 and 90,623,661).
Conflict of Interest
The authors declare that they have no conflict of interest.
Ethical Approval
All procedures in this study were in accordance with the ethical standards of the institutional research committee. For this type of study, formal consent is not required.
Electronic supplementary material
ESM 1
(PDF 113 kb.)
Rights and permissions
About this article
Cite this article
Oishi, N., Kondo, T., Nakazawa, T. et al. Frequent BRAF V600E and Absence of TERT Promoter Mutations Characterize Sporadic Pediatric Papillary Thyroid Carcinomas in Japan. Endocr Pathol 28, 103–111 (2017). https://doi.org/10.1007/s12022-017-9470-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12022-017-9470-y