Skip to main content

Advertisement

Log in

Publication Bias in Neuroimaging Research: Implications for Meta-Analyses

Neuroinformatics Aims and scope Submit manuscript

Abstract

Neuroimaging and the neurosciences have made notable advances in sharing activation results through detailed databases, making meta-analysis of the published research faster and easier. However, the effect of publication bias in these fields has not been previously addressed or accounted for in the developed meta-analytic methods. In this article, we examine publication bias in functional magnetic resonance imaging (fMRI) for tasks involving working memory in the frontal lobes (Brodmann Areas 4, 6, 8, 9, 10, 37, 45, 46, and 47). Seventy-four studies were selected from the literature and the effect of publication bias was examined using a number of regression-based techniques. Pearson’s r correlation coefficient and Cohen’s d effect size estimates were computed for the activation in each study and compared to the study sample size using Egger’s regression, Macaskill’s regression, and the ‘Trim and Fill’ method. Evidence for publication bias was identified in this body of literature (p < 0.01 for each test), generally, though was neither task- nor sub-region-dependent. While we focused our analysis on this subgroup of brain mapping studies, we believe our findings generalize to the brain imaging literature as a whole and databases seeking to curate their collective results. While neuroimaging databases of summary effects are of enormous value to the community, the potential publication bias should be considered when performing meta-analyses based on database contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Awad, M. (2010). Publication bias in clinical trials. Journal of the Canadian Dental Association, 76, a175.

    PubMed  Google Scholar 

  • Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 1088–1101.

    Article  PubMed  CAS  Google Scholar 

  • Bracken, M. B. (2005). Genomic epidemiology of complex disease: the need for an electronic evidence-based approach to research synthesis. American Journal of Epidemiology, 162(4), 297–301.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Erlbaum Associates.

    Google Scholar 

  • Deeks, J. J., Macaskill, P., & Irwig, L. (2005). The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of Clinical Epidemiology, 58(9), 882–893.

    Article  PubMed  Google Scholar 

  • Derrfuss, J., & Mar, R. A. (2009). Lost in localization: the need for a universal coordinate database. Neuroimage, 48(1), 1–7.

    Article  PubMed  Google Scholar 

  • Dickersin, K. (1990). The existence of publication bias and risk factors for its occurrence. Jama, 263(10), 1385–1389.

    Article  PubMed  CAS  Google Scholar 

  • Dickersin, K. (1997). How important is publication bias? A synthesis of available data. AIDS Education and Prevention, 9(1 Suppl), 15–21.

    PubMed  CAS  Google Scholar 

  • Dickersin, K., Min, Y. I., & Meinert, C. L. (1992). Factors influencing publication of research results. Follow-up of applications submitted to two institutional review boards. Jama, 267(3), 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.

    Article  PubMed  CAS  Google Scholar 

  • Easterbrook, P. J., Berlin, J. A., Gopalan, R., & Matthews, D. R. (1991). Publication bias in clinical research. Lancet, 337, 86772.

    Article  Google Scholar 

  • Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. ′2127453:′ 2127453.

    Article  PubMed  CAS  Google Scholar 

  • Fanelli, D. (2010). Do pressures to publish increase scientists’ bias? An empirical support from US States data. PLoS ONE, 5(4), e10271.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, P. B., Srithiran A., et al. (2008). An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Hum Brain Mapp, 29(4), 490–501

    Google Scholar 

  • Fox, P., & Lancaster, J. (2002). Mapping context and content: the BrainMap model. Nature Reviews Neuroscience, 3(April), 319–321.

    Article  PubMed  CAS  Google Scholar 

  • Fox, P. T., Mikiten, S., Davis, G., & Lancaster, J. (1994). BrainMap: A database of human function brain mapping. In R. W. Thatcher, M. Hallett, T. Zeffiro, E. R. John, & M. Heurta (Eds.), Functional neuroimaging technical foundations (pp. 95–105). San Diego: Academic.

    Google Scholar 

  • Fox, P. T., Laird, A. R., Fox, S. P., Fox, P. M., Uecker, A. M., Crank, M., et al. (2005). BrainMap taxonomy of experimental design: description and evaluation. Human Brain Mapping, 25(1), 185–198.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? Neuroimage, 10(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., et al. (2009). Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry & Neuroscience, 34(6), 418–432.

    Google Scholar 

  • Hayashino, Y., Noguchi, Y., & Fukui, T. (2005). Systematic evaluation and comparison of statistical tests for publication bias. Journal of Epidemiology, 15(6), 235–243.

    Article  PubMed  Google Scholar 

  • Hopewell S, Loudon K, Clarke MJ, Oxman AD, Dickersin K (2009) Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. (1): MR000006.

  • Kim, J. J., Kwon, J. S., et al. (2003). Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a[15(O)]H2O PET study. Am J Psychiatry, 160(5), 919–923

    Google Scholar 

  • Kromrey, J. D., & Redina-Gobioff, G. (2006). On knowing what we do not know: an emperical comparison of methods to detect publication bias in meta-analysis. Educational and Pyschological Measurement, 66, 357–373.

    Article  Google Scholar 

  • Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3(1), 65–78.

    Article  PubMed  Google Scholar 

  • Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. The Journal of Neuroscience, 29(46), 14496–14505.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, M. D., Berkman, E. T., & Wager, T. D. (2009). Correlations in social neuroscience aren’t voodoo: commentary on Vul et al. (2009). Perspectives on Psychological Science, 4(3), 299–307.

    Article  Google Scholar 

  • Light, R. J., & Pillemer, D. B. (1984). Summing up. The science of reviewing research. Cambridge: Harvard University Press.

    Google Scholar 

  • Lumley T (2009). rmeta: Meta-analysis. R package version 2.16. from http://CRAN.R-project.org/package=rmeta.

  • Macaskill, P., Walter, S. D., & Irwig, L. (2001). A comparison of methods to detect publication bias in meta-analysis. Statistics in Medicine, 20(4), 641–654.

    Article  PubMed  CAS  Google Scholar 

  • Malhi, G. S, Lagopoulos, J., et al. (2007). Reduced activation to implicit affect induction in euthymic bipolar patients: an fMRI study. J Affect Disord, 97(1–3), 109–122

    Google Scholar 

  • Matias-Guiu, J., & Garcia-Ramos, R. (2011). Editorial bias in scientific publications. Neurología, 26(1), 1–5.

    Article  PubMed  Google Scholar 

  • Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: a meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3(3), 207–233.

    Article  Google Scholar 

  • Neumann, J., von Cramon, D. Y., & Lohmann, G. (2008). Model-based clustering of meta-analytic functional imaging data. Human Brain Mapping, 29(2), 177–192.

    Article  PubMed  Google Scholar 

  • Nielsen, F. A., & Hansen, L. K. (2002). Modeling of activation data in the BrainMap database: detection of outliers. Human Brain Mapping, 15(3), 146–156.

    Article  PubMed  Google Scholar 

  • Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., & Rushton, L. (2006). Comparison of two methods to detect publication bias in meta-analysis. Jama, 295(6), 676–680.

    Article  PubMed  CAS  Google Scholar 

  • Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiologie Clinique, 30(5), 263–288.

    Article  PubMed  CAS  Google Scholar 

  • Poldrack, R. A., & Mumford, J. A. (2009). Independence in ROI analysis: where is the voodoo? Soc Cogn Affect Neurosci, 4(2), 208–213. ′2686233:′ 2686233.

    Article  PubMed  Google Scholar 

  • Polyzos NP, Valachis A, Patavoukas E, Papanikolaou EG, Messinis IE, Tarlatzis BC, et al. Publication bias in reproductive medicine: from the European Society of Human Reproduction and Embryology annual meeting to publication. Hum Reprod. 2011.

  • Rendina-Gobioff G, Kromrey JD (2006) PUB_BIAS: A SAS macro for detecting publication bias in meta-analysis. 14th Annual SouthEast SAS Users Group (SESUG) Conference. Atlanta, GA, SouthEast SAS Users Group (SESUG). PO05.

  • Rosenthal, R. (1979). The “File Drawer Problem” and tolerance for null results. Psychological Bulletin, 86(3), 638–641.

    Article  Google Scholar 

  • Rucker, G., Carpenter, J. R., & Schwarzer, G. (2011). Detecting and adjusting for small-study effects in meta-analysis. Biometrical Journal, 53(2), 351–368.

    Article  PubMed  Google Scholar 

  • Saeed M, Paulson K, Lambert P, Szwajcer D, Seftel M (2010) Publication bias in blood and marrow transplantation. Biol Blood Marrow Transplant.

  • Scargle, J. D. (2000). Publication bias: the “File-Drawer” problem in scientific inference. Journal of Scientific Exploration, 14(1), 91–106.

    Google Scholar 

  • Schooler, J. (2011). Unpublished results hide the decline effect. Nature, 470(7335), 437.

    Article  PubMed  CAS  Google Scholar 

  • Sterne, J. A., Gavaghan, D., & Egger, M. (2000). Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. Journal of Clinical Epidemiology, 53(11), 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  • Terrin, N., Schmid, C. H., & Lau, J. (2005). In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. Journal of Clinical Epidemiology, 58(9), 894–901.

    Article  PubMed  Google Scholar 

  • Thomason, M. E., Burrows, B. E., Gabrieli, J. D., & Glover, G. H. (2005). Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage, 25(3), 824–837.

    Article  PubMed  Google Scholar 

  • Thomason, M. E., Chang, C. E., Glover, G. H., Gabrieli, J. D., Greicius, M. D., & Gotlib, I. H. (2008). Default-mode function and task-induced deactivation have overlapping brain substrates in children. Neuroimage, 41(4), 1493–1503.

    Article  PubMed  Google Scholar 

  • Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16(3 Pt 1), 765–780.

    Article  PubMed  Google Scholar 

  • Van Essen, D. C. (2009). Lost in localization–but found with foci?! Neuroimage, 48(1), 14–17.

    Article  PubMed  Google Scholar 

  • Van Horn, J. D., & Gazzaniga, M. S. (2002). Databasing fMRI studies—toward a ‘Discovery Science’ of brain function. Nature Reviews. Neuroscience, 3(4), 314–318.

    Article  PubMed  CAS  Google Scholar 

  • Van Horn, J. D., & McManus, I. C. (1992). Ventricular enlargement in schizophrenia. A meta-analysis of studies of the ventricle:brain ratio (VBR). The British Journal of Psychiatry, 160, 687–697.

    Article  PubMed  Google Scholar 

  • Van Horn, J. D., Grafton, S. T., Rockmore, D., & Gazzaniga, M. S. (2004). Sharing neuroimaging studies of human cognition. Nature Neuroscience, 7(5), 473–481.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke, J. P. (1988). Passive smoking and lung cancer: a publication bias? Br Med J (Clin Res Ed), 296(6619), 391–392. ′2544973:′ 2544973.

    Article  CAS  Google Scholar 

  • Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fmri studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4(3), 274–290.

    Article  Google Scholar 

  • Yarkoni, T. (2009). Big correlations in little studies: inflated fMRI correlations reflect low statistical power—commentary on Vul et al. (2009). Perspectives on Psychological Science, 4(3), 294–298.

    Article  Google Scholar 

  • Zhu, Y., Duijvesz, D., Rovers, M. M., & Lock, T. M. (2011). Evidence-based urology in practice: publication bias. BJU Int, 107(2), 337. author reply 337–338.

    Article  PubMed  Google Scholar 

References to Articles Used in the Analyses of Publication Bias

  • Altamura, M., Elvevag, B., et al. (2007). Dissociating the effects of Sternberg working memory demands in prefrontal cortex. Psychiatry Research, 154(2), 103–114.

    Article  PubMed  Google Scholar 

  • Audoin, B., Au Duong, M. V., et al. (2005). Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Human Brain Mapping, 24(3), 216–228.

    Article  PubMed  Google Scholar 

  • Baumann, O., Frank, G., et al. (2007). Cortical activation during sequences of memory-guided saccades: a functional MRI study. Neuroreport, 18(5), 451–455.

    Article  PubMed  Google Scholar 

  • Bedwell, J. S., Horner, M. D., et al. (2005). Functional neuroanatomy of subcomponent cognitive processes involved in verbal working memory. The International Journal of Neuroscience, 115(7), 1017–1032.

    Article  PubMed  Google Scholar 

  • Beneventi, H., Barndon, R., et al. (2007). An fMRI study of working memory for schematic facial expressions. Scandinavian Journal of Psychology, 48(2), 81–86.

    Article  PubMed  Google Scholar 

  • Braver, T. S., Cohen, J. D., et al. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Breitenstein, C., Jansen, A., et al. (2005). Hippocampus activity differentiates good from poor learners of a novel lexicon. Neuroimage, 25(3), 958–968.

    Article  PubMed  Google Scholar 

  • Bunge, S. A., Ochsner, K. N., et al. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(Pt 10), 2074–2086.

    Article  PubMed  CAS  Google Scholar 

  • Cabeza, R., Dolcos, F., et al. (2002). Similarities and differences in the neural correlates of episodic memory retrieval and working memory. Neuroimage, 16(2), 317–330.

    Article  PubMed  Google Scholar 

  • Cairo, T. A., Liddle, P. F., et al. (2004). The influence of working memory load on phase specific patterns of cortical activity. Brain Research. Cognitive Brain Research, 21(3), 377–387.

    Article  PubMed  Google Scholar 

  • Caldwell, J. A., Mu, Q., et al. (2005). Are individual differences in fatigue vulnerability related to baseline differences in cortical activation? Behavioral Neuroscience, 119(3), 694–707.

    Article  PubMed  Google Scholar 

  • Chang, K., Adleman, N. E., et al. (2004). Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Archives of General Psychiatry, 61(8), 781–792.

    Article  PubMed  Google Scholar 

  • Chen, J. K., Johnston, K. M., et al. (2004). Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage, 22(1), 68–82.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Forman, S. D., et al. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1, 293–304.

    Article  Google Scholar 

  • Cohen, J. D., Perlstein, W. M., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.

    Article  PubMed  CAS  Google Scholar 

  • Cross, E. S., Schmitt, P. J., et al. (2007). Neural substrates of contextual interference during motor learning support a model of active preparation. Journal of Cognitive Neuroscience, 19(11), 1854–1871.

    Article  PubMed  Google Scholar 

  • Deckersbach, T., Rauch, S. L., et al. (2008). An fMRI investigation of working memory and sadness in females with bipolar disorder: a brief report. Bipolar Disorders, 10(8), 928–942.

    Article  PubMed  Google Scholar 

  • Desmond, J. E., Chen, S. H., et al. (2003). Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage, 19(4), 1510–1520.

    Article  PubMed  Google Scholar 

  • Dohnel, K., Sommer, M., et al. (2008). Neural correlates of emotional working memory in patients with mild cognitive impairment. Neuropsychologia, 46(1), 37–48.

    Article  PubMed  Google Scholar 

  • Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. The Journal of Neuroscience, 26(7), 2072–2079.

    Article  PubMed  CAS  Google Scholar 

  • Frangou, S., Kington, J., et al. (2008). Examining ventral and dorsal prefrontal function in bipolar disorder: a functional magnetic resonance imaging study. European Psychiatry, 23(4), 300–308.

    Article  PubMed  Google Scholar 

  • Grosbras, M. H., Leonards, U., et al. (2001). Human cortical networks for new and familiar sequences of saccades. Cerebral Cortex, 11(10), 936–945.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, O., Tost, H., et al. (2010). Pathological amygdala activation during working memory performance: Evidence for a pathophysiological trait marker in bipolar affective disorder. Human Brain Mapping, 31(1), 115–125.

    PubMed  Google Scholar 

  • Hamilton, A. F., & Grafton, S. T. (2009). Repetition suppression for performed hand gestures revealed by fMRI. Human Brain Mapping, 30(9), 2898–2906.

    Article  PubMed  Google Scholar 

  • Harvey, P. O., Fossati, P., et al. (2005). Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage, 26(3), 860–869.

    Article  PubMed  Google Scholar 

  • Hautzel, H., Mottaghy, F. M., et al. (2002). Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neuroscience Letters, 323(2), 156–160.

    Article  PubMed  CAS  Google Scholar 

  • Heide, W., Binkofski, F., et al. (2001). Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. The European Journal of Neuroscience, 13(6), 1177–1189.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, B., Kwon, J. S., et al. (2005). Functional imaging evidence of the relationship between recurrent psychotic episodes and neurodegenerative course in schizophrenia. Psychiatry Research, 139(3), 219–228.

    Article  Google Scholar 

  • Johnson, M. R., Morris, N. A., et al. (2006). A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biological Psychiatry, 60(1), 11–21.

    Article  PubMed  Google Scholar 

  • Kanayama, G., Rogowska, J., et al. (2004). Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study. Psychopharmacology (Berl), 176(3–4), 239–247.

    Article  CAS  Google Scholar 

  • Kirschen, M. P., Chen, S. H., et al. (2005). Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage, 24(2), 462–472.

    Article  PubMed  Google Scholar 

  • Koch, K., Pauly, K., et al. (2007). Gender differences in the cognitive control of emotion: An fMRI study. Neuropsychologia, 45(12), 2744–2754.

    Article  PubMed  Google Scholar 

  • Koch, K., Wagner, G., et al. (2007). Temporal modeling demonstrates preserved overlearning processes in schizophrenia: an fMRI study. Neuroscience, 146(4), 1474–1483.

    Article  PubMed  CAS  Google Scholar 

  • Koppelstaetter, F., Poeppel, T. D., et al. (2008). Does caffeine modulate verbal working memory processes? An fMRI study. Neuroimage, 39(1), 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Koshino, H., Kana, R. K., et al. (2008). fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2), 289–300.

    Article  PubMed  Google Scholar 

  • Kumari, V., Aasen, I., et al. (2006). Neural dysfunction and violence in schizophrenia: an fMRI investigation. Schizophrenia Research, 84(1), 144–164.

    Article  PubMed  Google Scholar 

  • Lagopoulos, J., Ivanovski, B., et al. (2007). An event-related functional MRI study of working memory in euthymic bipolar disorder. Journal of Psychiatry & Neuroscience, 32(3), 174–184.

    Google Scholar 

  • Landau, S. M., Schumacher, E. H., et al. (2004). A functional MRI study of the influence of practice on component processes of working memory. Neuroimage, 22(1), 211–221.

    Article  PubMed  Google Scholar 

  • LoPresti, M. L., Schon, K., et al. (2008). Working memory for social cues recruits orbitofrontal cortex and amygdala: a functional magnetic resonance imaging study of delayed matching to sample for emotional expressions. The Journal of Neuroscience, 28(14), 3718–3728.

    Article  PubMed  CAS  Google Scholar 

  • Malisza, K. L., Allman, A. A., et al. (2005). Evaluation of spatial working memory function in children and adults with fetal alcohol spectrum disorders: a functional magnetic resonance imaging study. Pediatric Research, 58(6), 1150–1157.

    Article  PubMed  Google Scholar 

  • Matsuo, K., Glahn, D. C., et al. (2007). Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Molecular Psychiatry, 12(2), 158–166.

    Article  PubMed  CAS  Google Scholar 

  • Meisenzahl, E. M., Scheuerecker, J., et al. (2006). Effects of treatment with the atypical neuroleptic quetiapine on working memory function: a functional MRI follow-up investigation. European Archives of Psychiatry and Clinical Neuroscience, 256(8), 522–531.

    Article  PubMed  CAS  Google Scholar 

  • Mendrek, A., Kiehl, K. A., et al. (2005). Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychological Medicine, 35(2), 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Mendrek, A., Laurens, K. R., et al. (2004). Changes in distributed neural circuitry function in patients with first-episode schizophrenia. The British Journal of Psychiatry, 185, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Mu, Q., Mishory, A., et al. (2005). Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep, 28(4), 433–446.

    PubMed  Google Scholar 

  • Mu, Q., Nahas, Z., et al. (2005). Decreased cortical response to verbal working memory following sleep deprivation. Sleep, 28(1), 55–67.

    PubMed  Google Scholar 

  • Neuner, I., Stocker, T., et al. (2007). Wechsler memory scale revised edition: neural correlates of the visual paired associates subtest adapted for fMRI. Brain Research, 1177, 66–78.

    Article  PubMed  CAS  Google Scholar 

  • Nystrom, L. E., Braver, T. S., et al. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage, 11(5 Pt 1), 424–446.

    Article  PubMed  CAS  Google Scholar 

  • Petit, L., Courtney, S. M., et al. (1998). Sustained activity in the medial wall during working memory delays. The Journal of Neuroscience, 18(22), 9429–9437.

    PubMed  CAS  Google Scholar 

  • Pochon, J. B., Levy, R., et al. (2002). The neural system that bridges reward and cognition in humans: an fMRI study. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5669–5674.

    Article  PubMed  CAS  Google Scholar 

  • Pochon, J. B., Levy, R., et al. (2001). The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cerebral Cortex, 11(3), 260–266.

    Article  PubMed  CAS  Google Scholar 

  • Prado, J., & Noveck, I. A. (2007). Overcoming perceptual features in logical reasoning: a parametric functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 19(4), 642–657.

    Article  PubMed  Google Scholar 

  • Quintana, J., Wong, T., et al. (2003). Right lateral fusiform gyrus dysfunction during facial information processing in schizophrenia. Biological Psychiatry, 53(12), 1099–1112.

    Article  PubMed  Google Scholar 

  • Ragland, J. D., Gur, R. C., et al. (2004). Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. The American Journal of Psychiatry, 161(6), 1004–1015.

    Article  PubMed  Google Scholar 

  • Ragland, J. D., Turetsky, B. I., et al. (2002). Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks. Neuropsychology, 16(3), 370–379.

    Article  PubMed  Google Scholar 

  • Ricciardi, E., Bonino, D., et al. (2006). Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience, 139(1), 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, J. B., Toni, I., et al. (2000). The prefrontal cortex: response selection or maintenance within working memory? Science, 288(5471), 1656–1660.

    Article  PubMed  CAS  Google Scholar 

  • Rypma, B., Prabhakaran, V., et al. (2001). Age differences in prefrontal cortical activity in working memory. Psychology and Aging, 16(3), 371–384.

    Article  PubMed  CAS  Google Scholar 

  • Rypma, B., Prabhakaran, V., et al. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage, 9(2), 216–226.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Carrion, R., Gomez, P. V., et al. (2008). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25(5), 479–494.

    Article  PubMed  Google Scholar 

  • Schmidt, H., Jogia, J., et al. (2009). No gender differences in brain activation during the N-back task: an fMRI study in healthy individuals. Human Brain Mapping, 30(11), 3609–3615.

    Article  PubMed  Google Scholar 

  • Sevostianov, A., Horwitz, B., et al. (2002). fMRI study comparing names versus pictures of objects. Human Brain Mapping, 16(3), 168–175.

    Article  PubMed  Google Scholar 

  • Shamosh, N. A., Deyoung, C. G., et al. (2008). Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19(9), 904–911.

    Article  PubMed  Google Scholar 

  • Sheridan, M. A., Hinshaw, S., et al. (2007). Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 46(10), 1357–1366.

    Article  PubMed  Google Scholar 

  • Shikata, E., Hamzei, F., et al. (2003). Functional properties and interaction of the anterior and posterior intraparietal areas in humans. The European Journal of Neuroscience, 17(5), 1105–1110.

    Article  PubMed  Google Scholar 

  • Simmons, W. K., Martin, A., et al. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15(10), 1602–1608.

    Article  PubMed  Google Scholar 

  • Smith, Y. R., Love, T., et al. (2006). Impact of combined estradiol and norethindrone therapy on visuospatial working memory assessed by functional magnetic resonance imaging. The Journal of Clinical Endocrinology and Metabolism, 91(11), 4476–4481.

    Article  PubMed  CAS  Google Scholar 

  • Sowell, E., Lu, L., et al. (2007). Medial temporal and frontal lobe activation abnormalities during verbal learning in children with fetal alcohol spectrum disorders. Neuroreport, 18, 635–639.

    Article  PubMed  Google Scholar 

  • Tan, H. Y., Sust, S., et al. (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. The American Journal of Psychiatry, 163(11), 1969–1977.

    Article  PubMed  Google Scholar 

  • Veltman, D. J., Rombouts, S. A., et al. (2003). Maintenance versus manipulation in verbal working memory revisited: an fMRI study. Neuroimage, 18(2), 247–256.

    Article  PubMed  Google Scholar 

  • Vinogradov, S., Luks, T. L., et al. (2008). Deficit in a neural correlate of reality monitoring in schizophrenia patients. Cerebral Cortex, 18(11), 2532–2539.

    Article  PubMed  Google Scholar 

  • Volle, E., Pochon, J. B., et al. (2005). Specific cerebral networks for maintenance and response organization within working memory as evidenced by the ‘double delay/double response’ paradigm. Cerebral Cortex, 15(7), 1064–1074.

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Wolf, R. C., et al. (2007). Increased left prefrontal activation in patients with unipolar depression: an event-related, parametric, performance-controlled fMRI study. Journal of Affective Disorders, 101(1–3), 175–185.

    Article  PubMed  Google Scholar 

  • Yoo, S. S., Wei, X., et al. (2005). Long-term reproducibility analysis of fMRI using hand motor task. The International Journal of Neuroscience, 115(1), 55–77.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant RC1MH088194 to JVH. The authors wish to thank the members of the Laboratory of Neuro Imaging (LONI) in the Department of Neurology at the UCLA David Geffen School of Medicine and three anonymous reviewers of a previous version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin G. Jennings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, R.G., Van Horn, J.D. Publication Bias in Neuroimaging Research: Implications for Meta-Analyses. Neuroinform 10, 67–80 (2012). https://doi.org/10.1007/s12021-011-9125-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-011-9125-y

Keywords

Navigation