Skip to main content
Log in

Ameliorative effect of ferulic acid on thyroid dysfunction against propyl-thiouracil induced hypothyroid rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Hypothyroidism is an endocrine disorder characterised by decreased T3, T4 and increased TSH levels. This study aims to examine the potential effects of Ferulic acid (FA) on rats with hypothyroidism induced by propylthiouracil through the estimation of biochemical parameters and histopathological studies.

Methods

Twenty-five female wistar rats were allocated into five groups: Control group [1% CMC, p.o.], Disease group [PTU-50 mg/kg, p.o.], [Levothyroxine (LT4) group - 20 µg/kg, p.o. + PTU-50 mg/kg, p.o.], [FA -25 mg/kg, p.o. + PTU-50 mg/kg, p.o.] and [FA 50 mg/kg, p.o. + PTU-50 mg/kg, p.o.]. On 15th day blood was collected and serum was separated for estimation of biochemical parameters, liver and kidney homogenate was utilised for the estimation of oxidative stress markers and the thyroid gland was dissected to examine histological features.

Results

PTU administration for 14 days showed a substantial decline in T3 and T4 and increases in TSH levels. PTU-administered rats significantly increased TC, TG and LDL levels, and decreased HDL levels. AST, ALT, urea, creatinine, and IL-6 were determined and these levels were significantly altered in PTU-induced hypothyroid group. In hypothyroid rats MDA, NO, GSH and SOD levels were significantly altered. However, treatment with FA for 14 days attenuated PTU-induced alterations. Furthermore, FA improves the histological changes of the thyroid gland.

Conclusion

In conclusion, FA treatment showed a protective effect against hypothyroidism by stimulating the thyroid hormones through the activation of thyroid peroxidase enzyme and improving thyroid function. In addition, FA diminished the increase in lipids, liver and kidney markers, oxidative stress and inflammation.

Graphical Abstract

Highlights

  • Hypothyroidism induced by PTU is ameliorated by ferulic acid in rats

  • Ferulic acid showed a protective effect on thyroid hormones and lipid profile

  • Ferulic acid inhibits oxidative stress and inflammation

  • Ferulic acid improved the structure and integrity of the thyroid gland

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

PTU:

Propylthiouracil

FA:

Ferulic acid

FA-25:

Ferulic acid 25 mg/kg

FA-50:

Ferulic acid 50 mg/kg

LT4:

Levothyroxine

CMC:

Carboxyl methyl cellulose

FA:

Ferulic acid

T3:

Tri-iodothyronine

T4:

Tetra-iodothyronine

TSH:

Thyroid stimulation Hormone

TPO:

Thyroid peroxidase

TG:

Triglycerides

ALT:

Alanine aminotransferase

LDL:

Low-density lipoprotein

TC:

Total Cholesterol

HDL:

High-density lipoprotein

AST:

Aspartate aminotransferase

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

Veh:

Vehicle

GSH:

Reduced glutathione

NO:

Nitric oxide

Ab:

Antibody

SOD:

Superoxide dismutase

IL:

Interleukin

ELISA:

Enzyme-linked immune sorbent assay.

References

  1. U. Feldt-Rasmussen, G. Effraimidis, M. Klose, The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Mol. Cell. Endocrinol. 525, 111173 (2021). https://doi.org/10.1016/j.mce.2021.111173

    Article  CAS  PubMed  Google Scholar 

  2. B. Kim, Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18, 141–144 (2008). https://doi.org/10.1089/thy.2007.0266

    Article  CAS  PubMed  Google Scholar 

  3. J.A. Franklyn, K. Boelaert, Subclinical thyroid disease: where is the evidence? Lancet Diabetes Endocrinol. 1, 172–173 (2013). https://doi.org/10.1016/S2213-8587(13)70030-5

    Article  PubMed  Google Scholar 

  4. Thyroid disorders in India: An epidemiological perspective (2011), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169866/. Accessed 3 Aug 2023

  5. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits https://pubmed.ncbi.nlm.nih.gov/21058882/ (2011), Accessed 3 Aug 2023

  6. J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization. Endocr. J. 62, 927–938 (2015). https://doi.org/10.1507/endocrj.EJ15-0253

    Article  CAS  PubMed  Google Scholar 

  7. P.A. Singer, Thyroiditis. Acute, subacute, and chronic. Med. Clin. North Am. 75, 61–77 (1991). https://doi.org/10.1016/s0025-7125(16)30472-2

    Article  CAS  PubMed  Google Scholar 

  8. P.M. Yen, Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142 (2001). https://doi.org/10.1152/physrev.2001.81.3.1097

    Article  CAS  PubMed  Google Scholar 

  9. Thyroid Hormones, Oxidative Stress, and Inflammation (2016), https://www.hindawi.com/journals/mi/2016/6757154/. Accessed 3 Aug 2023

  10. D. Sahoo, S. Jena, G. Chainy, Thyroid Dysfunction and Testicular Redox Status: An Intriguing Association. In Book Oxidants, Antioxidants, and Impact of the Oxidative Status in Male Reproduction, 1st edn. (Elsevier, 2018), pp. 149–169

  11. U. Resch, G. Helsel, F. Tatzber, H. Sinzinger, Antioxidant status in thyroid dysfunction. Clin. Chem. Lab. Med. 40, 1132–1134 (2002). https://doi.org/10.1515/CCLM.2002.198

    Article  CAS  PubMed  Google Scholar 

  12. L.H. Duntas, Oxidants, antioxidants in physical exercise and relation to thyroid function. Horm. Metab. Res. 37, 572–576 (2005). https://doi.org/10.1055/s-2005-870425

    Article  CAS  PubMed  Google Scholar 

  13. G.B.N. Chainy, D.K. Sahoo, Hormones and oxidative stress: an overview. Free Radic. Res. 54, 1–26 (2020). https://doi.org/10.1080/10715762.2019.1702656

    Article  CAS  PubMed  Google Scholar 

  14. katzung-pharmacology.pdf, (n.d.). https://pharmacomedicale.org/images/cnpm/CNPM_2016/katzung-pharmacology.pdf. Accessed 3 Sept 2023

  15. Levothyroxine: Uses, Dosage, Side Effects, Drugs.Com (n.d.). https://www.drugs.com/levothyroxine.html. Accessed 12 Sept 2023

  16. C.G.P. Roberts, P.W. Ladenson, Hypothyroidism. Lancet 363, 793–803 (2004). https://doi.org/10.1016/S0140-6736(04)15696-1

    Article  CAS  PubMed  Google Scholar 

  17. N. Tandon, Management of hypothyroidism in adults. J. Assoc. Phys. India 59(Suppl), 21–25 (2011)

    Google Scholar 

  18. A. Bento-Silva, M.C. Vaz Patto, M. do Rosário Bronze, Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem. 246, 360–378 (2018). https://doi.org/10.1016/j.foodchem.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  19. P. Mattila, J. Kumpulainen, Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 50, 3660–3667 (2002). https://doi.org/10.1021/jf020028p

    Article  CAS  PubMed  Google Scholar 

  20. Surface enhanced Raman spectroscopy of phenolic antioxidants: a systematic evaluation of ferulic acid, p-coumaric acid, caffeic acid and sinapic acid—ScienceDirect (2017). https://www.sciencedirect.com/science/article/pii/S0924203116302855. Accessed 5 Aug 2023

  21. G. Nunes Bezerra, M. Pereira, E. Ostrosky, E. Barbosa, M. Moura, M. Ferrari, C.F.S. Aragão, A. Barreto Gomes, Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5654-9

  22. M. Ramar, B. Manikandan, T. Raman, A. Priyadarsini, S. Palanisamy, M. Velayudam, A. Munusamy, N. Marimuthu Prabhu, B. Vaseeharan, Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur. J. Pharmacol. 690, 226–235 (2012). https://doi.org/10.1016/j.ejphar.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  23. C. Oresajo, T. Stephens, P.D. Hino, R.M. Law, M. Yatskayer, P. Foltis, S. Pillai, S.R. Pinnell, Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin. J. Cosmet. Dermatol. 7, 290–297 (2008). https://doi.org/10.1111/j.1473-2165.2008.00408.x

    Article  PubMed  Google Scholar 

  24. F. Gerin, H. Erman, M. Erboga, U. Sener, A. Yilmaz, H. Seyhan, A. Gurel, The effects of ferulic acid against oxidative stress and inflammation in formaldehyde-induced hepatotoxicity. Inflammation 39, 1377–1386 (2016). https://doi.org/10.1007/s10753-016-0369-4

    Article  CAS  PubMed  Google Scholar 

  25. A. Suzuki, D. Kagawa, A. Fujii, R. Ochiai, I. Tokimitsu, I. Saito, Short- and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. Am J Hypertens 15, 351–357 (2002). https://doi.org/10.1016/s0895-7061(01)02337-8

    Article  CAS  PubMed  Google Scholar 

  26. M. Roghani, H. Kalantari, M.J. Khodayar, L. Khorsandi, M. Kalantar, M. Goudarzi, H. Kalantar, Alleviation of liver dysfunction, oxidative stress and inflammation underlies the protective effect of ferulic acid in methotrexate-induced hepatotoxicity. Drug Des. Dev. Ther. 14, 1933 (2020). https://doi.org/10.2147/DDDT.S237107

    Article  CAS  Google Scholar 

  27. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial (2018). https://pubmed.ncbi.nlm.nih.gov/29865227/. Accessed 5 Aug 2023

  28. P.G. Jain, S.J. Surana, Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats. EXCLI J 15, 599–613 (2016). https://doi.org/10.17179/excli2016-394

    Article  PubMed  PubMed Central  Google Scholar 

  29. R. Ordoñez, L. Atarés, A. Chiralt, Antibacterial properties of cinnamic and ferulic acids incorporated to starch and PLA monolayer and multilayer films. Food Control 136, 108878 (2022). https://doi.org/10.1016/j.foodcont.2022.108878

    Article  CAS  Google Scholar 

  30. C. Eroğlu, M. Seçme, G. Bağcı, Y. Dodurga, Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol. 36, 9437–9446 (2015). https://doi.org/10.1007/s13277-015-3689-3

    Article  CAS  PubMed  Google Scholar 

  31. M. Vijayakumar, G. Jagadeesan, E. Bharathi, Ameliorative potential of ferulic acid on cardiotoxicity induced by mercuric chloride. Biomed. Prev. Nutr. 4, 239–243 (2014). https://doi.org/10.1016/j.bionut.2014.02.005

    Article  Google Scholar 

  32. S. Ojha, H. Javed, S. Azimullah, S.B. Abul Khair, M.E. Haque, Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des. Dev. Ther. 9, 5499–5510 (2015). https://doi.org/10.2147/DDDT.S90616

    Article  CAS  Google Scholar 

  33. E.-J. Wang, M.-Y. Wu, J.-H. Lu, Ferulic acid in animal models of alzheimer’s disease: a systematic review of preclinical studies. Cells 10, 2653 (2021). https://doi.org/10.3390/cells10102653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. E. Habza-Kowalska, A.A. Kaczor, D. Bartuzi, J. Piłat, U. Gawlik-Dziki, Some dietary phenolic compounds can activate thyroid peroxidase and inhibit lipoxygenase-preliminary study in the model systems. Int. J. Mol. Sci. 22, 5108 (2021). https://doi.org/10.3390/ijms22105108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Singh, V.S.S. Panda, P. Dande, Protective effect of a polyherbal bioactive fraction in propylthiouracil-induced thyroid toxicity in ratsby modulation of the hypothalamic–pituitary–thyroid and hypothalamic–pituitary–adrenal axes. Toxicol. Rep. 7, 730–742 (2020). https://doi.org/10.1016/j.toxrep.2020.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Chowdhury, S. Ghosh, A.K. Das, P.C. Sil, Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy, Frontiers in Pharmacology 10 (2019). https://doi.org/10.3389/fphar.2019.00027. Accessed 5 Aug 2023

  37. H. EL-Tantawi, F. Abozeid, Impact of Spirulina on Propylthiouracil-induced Hypothyroidism in Albino rats, a histological, immunohistochemical and biochemical approach. Egypt. J. Histol. 0(0), 0 (2019). https://doi.org/10.21608/ejh.2019.16398.1159

    Article  Google Scholar 

  38. H.S. Parmar, A. Kar, Protective role of Mangifera indica, Cucumis melo and Citrullus vulgaris peel extracts in chemically induced hypothyroidism. Chem. Biol. Interact. 177, 254–258 (2009). https://doi.org/10.1016/j.cbi.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  39. L. Xiu, G. Zhong, D. Liu, S. Chen, H. Liu, F. Chen, Comparative Efficacy and Toxicity of Different Species of Sargassum in Haizao Yuhu Decoction in PTU-Induced Goiter Rats. Evid. Based Complement. Alternat. Med. 2017, e3526186 (2017). https://doi.org/10.1155/2017/3526186

    Article  Google Scholar 

  40. OliverH. Lowry, NiraJ. Rosebrough, A.L. Farr, RoseJ. Randall, Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  41. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979). https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  42. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction (1996). https://pubmed.ncbi.nlm.nih.gov/8782580/. Accessed 19 Sept 2023

  43. G.L. Ellman, Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959). https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  44. A. Nandi, I.B. Chatterjee, Assay of superoxide dismutase activity in animal tissues. J. Biosci. 13, 305–315 (1988). https://doi.org/10.1007/BF02712155

    Article  CAS  Google Scholar 

  45. W.S. da-Silva, J.W. Harney, B.W. Kim, J. Li, S.D.C. Bianco, A. Crescenzi, M.A. Christoffolete, S.A. Huang, A.C. Bianco, The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes 56, 767–776 (2007). https://doi.org/10.2337/db06-1488

    Article  CAS  PubMed  Google Scholar 

  46. P.R. Nambiar, G.S. Palanisamy, C. Okerberg, A. Wolford, K. Walters, L. Buckbinder, W.J. Reagan, Toxicities associated with 1-month treatment with propylthiouracil (PTU) and methimazole (MMI) in male rats. Toxicol. Pathol. 42, 970–983 (2014). https://doi.org/10.1177/0192623313502708

    Article  CAS  PubMed  Google Scholar 

  47. J. Alkalby, S. J S, Effect of propylthiouracil-induced hypothyroidism on reproductive effeciency of adult male rats. Bas.j.Vet.Res 12, 113–121 (2013). https://doi.org/10.33762/bvetr.2013.83631

    Article  Google Scholar 

  48. Y. Wang, M.A. Beydoun, L. Liang, B. Caballero, S.K. Kumanyika, Will all Americans become overweight or obese? estimating the progression and cost of the US obesity epidemic. Obesity 16, 2323–2330 (2008). https://doi.org/10.1038/oby.2008.351

    Article  PubMed  Google Scholar 

  49. M. Umezu, S. Kagabu, J. Jiang, E. Sato, Evaluation and characterization of congenital hypothyroidism in rdw dwarf rats. Lab Anim Sci 48, 496–501 (1998)

    CAS  PubMed  Google Scholar 

  50. C.V. Rizos, M.S. Elisaf, E.N. Liberopoulos, Effects of thyroid dysfunction on lipid profile. Open Cardiovasc. Med. J. 5, 76–84 (2011). https://doi.org/10.2174/1874192401105010076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. X.-D. Yang, X.-C. Ge, S.-Y. Jiang, Y.-Y. Yang, Potential lipolytic regulators derived from natural products as effective approaches to treat obesity. Front. Endocrinol. 13, 1000739 (2022). https://doi.org/10.3389/fendo.2022.1000739

    Article  Google Scholar 

  52. A.J. Hulbert, Thyroid hormones and their effects: a new perspective. Biol. Rev. 75, 519–631 (2000). https://doi.org/10.1017/S146479310000556X

    Article  CAS  PubMed  Google Scholar 

  53. G.J. Grover, K. Mellström, L. Ye, J. Malm, Y.-L. Li, L.-G. Bladh, P.G. Sleph, M.A. Smith, R. George, B. Vennström, K. Mookhtiar, R. Horvath, J. Speelman, D. Egan, J.D. Baxter, Selective thyroid hormone receptor-β activation: a strategy for reduction of weight, cholesterol, and lipoprotein (a) with reduced cardiovascular liability. Proc. Natl Acad. Sci. 100, 10067–10072 (2003). https://doi.org/10.1073/pnas.1633737100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M.D. Erion, E.E. Cable, B.R. Ito, H. Jiang, J.M. Fujitaki, P.D. Finn, B.-H. Zhang, J. Hou, S.H. Boyer, P.D. van Poelje, D.L. Linemeyer, Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc. Natl Acad. Sci. 104, 15490–15495 (2007). https://doi.org/10.1073/pnas.0702759104

    Article  PubMed  PubMed Central  Google Scholar 

  55. O. Bakker, F. Hudig, S. Meijssen, W.M. Wiersinga, Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene. Biochem. Biophys. Res. Commun. 249, 517–521 (1998). https://doi.org/10.1006/bbrc.1998.9174

    Article  CAS  PubMed  Google Scholar 

  56. H. Liu, D. Peng, Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism, Endocrine Connections 11 (2022). https://doi.org/10.1530/EC-21-0002

  57. K.S. Lam, M.K. Chan, R.T. Yeung, High-density lipoprotein cholesterol, hepatic lipase and lipoprotein lipase activities in thyroid dysfunction–effects of treatment. Q J Med 59, 513–521 (1986)

    CAS  PubMed  Google Scholar 

  58. M. R, H. H, The relationship between the thyroid gland and the liver, QJM: Monthly Journal of the Association of Physicians 95 (2002). https://doi.org/10.1093/qjmed/95.9.559

  59. Hepatic injury during propylthiouracil therapy in patients with hyperthyroidism. A cohort study (1993), https://pubmed.ncbi.nlm.nih.gov/8439116/. Accessed 5 Aug 2023

  60. Propylthiouracil-induced acute liver failure: role of liver transplantation (2010), https://pubmed.ncbi.nlm.nih.gov/21234410/. Accessed 5 Aug 2023

  61. Administration of Nigella sativa during neonatal and juvenile growth period improved liver function of propylthiouracil—induced hypothyroid rats (2020), https://pubmed.ncbi.nlm.nih.gov/30189756/. Accessed 5 Aug 2023

  62. A. Yadav, S. Arora, V. Saini, M.K. Arora, R. Singh, J. Bhattacharjee, Influence of thyroid hormones on biochemical parameters of liver function: a case-control study in North Indian population. Int. J. Med. Update-EJOURNAL 8 (2013). https://doi.org/10.4314/ijmu.v8i1

  63. P. Punekar, A.K. Sharma, A. Jain, A study of thyroid dysfunction in cirrhosis of liver and correlation with severity of liver disease. Indian J. Endocrinol. Metab. 22, 645–650 (2018). https://doi.org/10.4103/ijem.IJEM_25_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. A.M. Mahmoud, O.E. Hussein, S.M. Abd El-Twab, W.G. Hozayen, Ferulic acid protects against methotrexate nephrotoxicity via activation of Nrf2/ARE/HO-1 signaling and PPARγ, and suppression of NF-κB/NLRP3 inflammasome axis. Food Funct. 10, 4593–4607 (2019). https://doi.org/10.1039/c9fo00114j

    Article  CAS  PubMed  Google Scholar 

  65. M.A. Esmat, A. Osman, R.E. Hassan, S.A. Hagag, T.K. El-maghraby, Hepatoprotective effect of ferulic acid and/or low doses of γ-irradiation against cisplatin-induced liver injury in rats. Hum Exp Toxicol 41, 09603271221136205 (2022). https://doi.org/10.1177/09603271221136205

    Article  CAS  Google Scholar 

  66. H.-C. Chi, C.-Y. Tsai, M.-M. Tsai, C.-T. Yeh, K.-H. Lin, Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J. Biomed. Sci. 26, 24 (2019). https://doi.org/10.1186/s12929-019-0517-x

    Article  PubMed  PubMed Central  Google Scholar 

  67. A.G. Cicatiello, D. Di Girolamo, M. Dentice, Metabolic Effects of the Intracellular Regulation of Thyroid Hormone: Old Players, New Concepts, Frontiers in Endocrinology 9 (2018), https://doi.org/10.3389/fendo.2018.00474. Accessed 17 Sept 2023

  68. H. Bräunlich, Postnatal development of kidney function in rats receiving thyroid hormones. Exp Clin Endocrinol 83, 243–250 (1984). https://doi.org/10.1055/s-0029-1210336

    Article  PubMed  Google Scholar 

  69. F. Vargas, J.M. Moreno, I. Rodríguez-Gómez, R. Wangensteen, A. Osuna, M. Alvarez-Guerra, J. García-Estañ, Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol 154, 197–212 (2006). https://doi.org/10.1530/eje.1.02093

    Article  CAS  PubMed  Google Scholar 

  70. Increased prevalence of renal and urinary tract anomalies in children with congenital hypothyroidism (2009). https://pubmed.ncbi.nlm.nih.gov/18823909/. Accessed 5 Aug 2023

  71. V. Saini, A. Yadav, M.K. Arora, S. Arora, R. Singh, J. Bhattacharjee, Correlation of creatinine with TSH levels in overt hypothyroidism - a requirement for monitoring of renal function in hypothyroid patients? Clin. Biochem. 45, 212–214 (2012). https://doi.org/10.1016/j.clinbiochem.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  72. S.K. Chakrabarti, S. Ghosh, S. Banerjee, S. Mukherjee, S. Chowdhury, Oxidative stress in hypothyroid patients and the role of antioxidant supplementation. Indian J. Endocrinol. Metab. 20, 674–678 (2016). https://doi.org/10.4103/2230-8210.190555

    Article  PubMed  PubMed Central  Google Scholar 

  73. A. Dardano, L. Ghiadoni, Y. Plantinga, N. Caraccio, A. Bemi, E. Duranti, S. Taddei, E. Ferrannini, A. Salvetti, F. Monzani, Recombinant human thyrotropin reduces endothelium-dependent vasodilation in patients monitored for differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 91, 4175–4178 (2006). https://doi.org/10.1210/jc.2006-0440

    Article  CAS  PubMed  Google Scholar 

  74. G. Baskol, H. Atmaca, F. Tanriverdi, M. Baskol, D. Kocer, F. Bayram, Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Exp. Clin. Endocrinol. Diabetes 115, 522–526 (2007). https://doi.org/10.1055/s-2007-981457

    Article  CAS  PubMed  Google Scholar 

  75. L. JhansiLakshmi, M. Eli, Z. Doddigarla, S. Kumari, Serum lipids and oxidative stress in hypothyroidism.J. Adv. Res. Biol. Sci. 5, 63–66 (2013)

    Google Scholar 

  76. C. Massart, C. Hoste, A. Virion, J. Ruf, J.E. Dumont, J. Van Sande, Cell biology of H2O2 generation in the thyroid: investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines. Mol. Cell Endocrinol. 343, 32–44 (2011). https://doi.org/10.1016/j.mce.2011.05.047

    Article  CAS  PubMed  Google Scholar 

  77. C. Thanas, P.G. Ziros, D.V. Chartoumpekis, C.O. Renaud, G.P. Sykiotis, The Keap1/Nrf2 signaling pathway in the thyroid-2020 update. Antioxidants 9, 1082 (2020). https://doi.org/10.3390/antiox9111082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. H. Ohye, M. Sugawara, Dual oxidase, hydrogen peroxide and thyroid diseases. Exp. Biol. Med. 235, 424–433 (2010). https://doi.org/10.1258/ebm.2009.009241

    Article  CAS  Google Scholar 

  79. R.S. Fortunato, A.C.F. Ferreira, F. Hecht, C. Dupuy, D.P. Carvalho, Sexual dimorphism and thyroid dysfunction: a matter of oxidative stress? J. Endocrinol. 221, R31–40 (2014). https://doi.org/10.1530/JOE-13-0588

    Article  CAS  PubMed  Google Scholar 

  80. M. Mohibbullah, K.M.I. Bashir, S.-K. Kim, Y.-K. Hong, A. Kim, S.-K. Ku, J.-S. Choi, Protective effects of a mixed plant extracts derived from Astragalus membranaceus and Laminaria japonica on PTU-induced hypothyroidism and liver damages. J. Food Biochem. 43, e12853 (2019). https://doi.org/10.1111/jfbc.12853

    Article  CAS  PubMed  Google Scholar 

  81. A. Mancini, C. Di Segni, S. Raimondo, G. Olivieri, A. Silvestrini, E. Meucci, D. Currò, Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm. 2016, 6757154 (2016). https://doi.org/10.1155/2016/6757154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. P.S. Tayde, N.M. Bhagwat, P. Sharma, B. Sharma, P.P. Dalwadi, A. Sonawane, A. Subramanyam, M. Chadha, P.K. Varthakavi, Hypothyroidism and depression: are cytokines the link? Indian J. Endocrinol. Metab. 21, 886–892 (2017). https://doi.org/10.4103/ijem.IJEM_265_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. E.E. Türemen, B. Çetinarslan, T. Şahin, Z. Cantürk, İ. Tarkun, Endothelial dysfunction and low grade chronic inflammation in subclinical hypothyroidism due to autoimmune thyroiditis. Endocr. J. 58, 349–354 (2011). https://doi.org/10.1507/endocrj.k10e-333

    Article  PubMed  Google Scholar 

  84. K.G. Abdel-Wahhab, H.H. Mourad, F.A. Mannaa, F.A. Morsy, L.K. Hassan, R.F. Taher, Role of ashwagandha methanolic extract in the regulation of thyroid profile in hypothyroidism modeled rats. Mol. Biol. Rep. 46, 3637–3649 (2019). https://doi.org/10.1007/s11033-019-04721-x

    Article  CAS  PubMed  Google Scholar 

  85. A. Kar, S. Panda, M. Singh, S. Biswas, Regulation of PTU-induced hypothyroidism in rats by caffeic acid primarily by activating thyrotropin receptors and by inhibiting oxidative stress. Phytomed. Plus 2, 100298 (2022). https://doi.org/10.1016/j.phyplu.2022.100298

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the management of Shri Vishnu College of Pharmacy for providing facilities for completion this project.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aravinda Sai Kolusu and Suma Rongala. Bhanu Prakash Arakareddy and Pavan Kumar Samudrala investigated and supervised the study. Aravinda Sai Kolusu and Sujit Kumar Mohanty were performed the formal statistical analysis. The first draft of the manuscript was written by Suma Rongala and reviewed by Aravinda Sai Kolusu, Bhanu Prakash Arakareddy and Pavan Kumar Samudrala. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bhanu Prakash Arakareddy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rongala, S., Kolusu, A.S., Jakkamsetti, M.S. et al. Ameliorative effect of ferulic acid on thyroid dysfunction against propyl-thiouracil induced hypothyroid rats. Endocrine (2024). https://doi.org/10.1007/s12020-024-03818-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03818-z

Keywords

Navigation