Skip to main content

Advertisement

Log in

Serum betaine and dimethylglycine in mid-pregnancy and the risk of gestational diabetes mellitus: a case-control study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To investigate the associations of choline, betaine, dimethylglycine (DMG), L-carnitine, and Trimethylamine-N-oxide (TMAO) with the risk of Gestational diabetes mellitus (GDM) as well as the markers of glucose homeostasis.

Methods

We performed a case-control study including 200 diagnosed GDM cases and 200 controls matched by maternal age (±2 years) and gestational age (±2 weeks). Concentrations of serum metabolites were measured by the high-performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS).

Results

Compared to the control group, GDM group had significantly lower serum betaine concentration and betaine/choline ratio, and higher DMG concentration. Furthermore, decreased betaine concentration and betaine/choline ratio, increased DMG concentration showed significant association with the risk of GDM. In addition, serum betaine concentrations were negatively associated with blood glucose levels at 1-h post-glucose load (OGTT-1h), and both betaine and L-carnitine concentrations were positively associated with 1,5-anhydroglucitol levels. Betaine/choline ratio was negatively associated with OGTT-1h and blood glucose levels at 2-h post-glucose load (OGTT-2h) and serum choline concentrations were negatively associated with fasting blood glucose and positively associated with OGTT-2h.

Conclusion

Decreased serum betaine concentrations and betaine/choline ratio, and elevated DMG concentrations could be significant risk factors for GDM. Furthermore, betaine may be associated with blood glucose regulation and short-term glycemic fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P. Chen, S. Wang, J. Ji et al. Risk factors and management of gestational diabetes. Cell Biochem. Biophys. 71(2), 689–694 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. E.C. Johns, F.C. Denison, J.E. Norman et al. Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol. Metab. 29(11), 743–754 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. B. Wicklow, R. Retnakaran, Gestational diabetes mellitus and its implications across the life span. Diabetes Metab J 47(3), 333–344 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. W. Ye, C. Luo, J. Huang et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ 377, e67946 (2022)

    Google Scholar 

  5. M.S. Paulo, N.M. Abdo, R. Bettencourt-Silva et al. Gestational diabetes mellitus in Europe: a systematic review and meta-analysis of prevalence studies. Front. Endocrinol. 12, 691033 (2021)

    Article  Google Scholar 

  6. A. Sweeting, J. Wong, H.R. Murphy et al. A clinical update on gestational diabetes mellitus. Endocr. Rev. 43(5), 763–793 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  7. J. Leng, P. Shao, C. Zhang et al. Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, china. Plos One 10(3), e121029 (2015)

    Article  Google Scholar 

  8. H.D. Mcintyre, P. Catalano, C. Zhang et al. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 5(1), 47 (2019)

    Article  PubMed  Google Scholar 

  9. J. Wan, J. Ma, Efficacy of dietary supplements targeting gut microbiota in the prevention and treatment of gestational diabetes mellitus. Front. Microbiol. 13, 927883 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  10. M. Lever, S. Slow, The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 43(9), 732–744 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. D. Fennema, I.R. Phillips, E.A. Shephard, Trimethylamine and trimethylamine n-oxide, a flavin-containing monooxygenase 3 (fmo3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos. 44(11), 1839–1850 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P. Gatarek, J. Kaluzna-Czaplinska, Trimethylamine n-oxide (tmao) in human health. Excli. J. 20, 301–319 (2021)

    PubMed  PubMed Central  Google Scholar 

  13. Y. Heianza, D. Sun, X. Li et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the pounds lost trial. Gut 68(2), 263–270 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. N. Friedrich, T. Skaaby, M. Pietzner et al. Identification of urine metabolites associated with 5-year changes in biomarkers of glucose homoeostasis. Diabetes Metab. 44(3), 261–268 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. S. Qi, L. Liu, S. He et al. Trimethylamine n-oxide and related metabolites in the serum and risk of type 2 diabetes in the Chinese population: a case-control study. Diabetes Metab. Syndr. Obes. 16, 547–555 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  16. K. Szkudelska, T. Szkudelski, The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes. Biomed. Pharmacother. 150, 112946 (2022)

    Article  CAS  PubMed  Google Scholar 

  17. J. Du, L. Shen, Z. Tan et al. Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet. Nutrients 10(2), 131 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  18. X. Gao, X. Liu, J. Xu et al. Dietary trimethylamine n-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J. Biosci. Bioeng. 118(4), 476–481 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. X. Huo, J. Li, Y. Cao et al. Trimethylamine n-oxide metabolites in early pregnancy and risk of gestational diabetes: a nested case-control study. J. Clin. Endocrinol. Metab. 104(11), 5529–5539 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  20. E. Barzilay, A. Moon, L. Plumptre et al. Fetal one-carbon nutrient concentrations may be affected by gestational diabetes. Nutr. Res. 55, 57–64 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. I.B. Hirsch, Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care 38(8), 1610–1614 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. M.J. Kim, H.S. Jung, Y. Hwang-Bo et al. Evaluation of 1, 5-anhydroglucitol as a marker for glycemic variability in patients with type 2 diabetes mellitus. Acta Diabetol. 50, 505–510 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. D.A. American, Standards of medical care in diabetes—2014. Diabetes Care 37(Supplement_1), S14–S80 (2014)

    Article  Google Scholar 

  24. C. Steuer, P. Schütz, L. Bernasconi et al. Simultaneous determination of phosphatidylcholine-derived quaternary ammonium compounds by a lc–ms/ms method in human blood plasma, serum and urine samples. J. Chromatogr. B 1008, 206–211 (2016)

    Article  CAS  Google Scholar 

  25. M.F. Mujica-Coopman, A. Tan, T.H. Schroder et al. Serum betaine and dimethylglycine are higher in South Asian compared with European pregnant women in Canada, with betaine and total homocysteine inversely associated in early and midpregnancy, independent of ethnicity. J. Nutr. 149(12), 2145–2155 (2019)

    Article  PubMed  Google Scholar 

  26. U. Keller, C. van der Wal, G. Seliger et al. Carnitine status of pregnant women: effect of carnitine supplementation and correlation between iron status and plasma carnitine concentration. Eur. J. Clin. Nutr. 63(9), 1098–1105 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. I.Y. Ozarda, G. Uncu, I.H. Ulus, Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch. Physiol. Biochem. 110(5), 393–399 (2002)

    Article  Google Scholar 

  28. X. Gong, Y. Du, X. Li et al. Maternal plasma betaine in middle pregnancy was associated with decreased risk of gdm in twin pregnancy: a cohort study. Diabetes Metab. Syndr. Obes. 14, 2495–2504 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  29. E. Kathirvel, K. Morgan, G. Nandgiri et al. Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am. J. Physiol. Gastr. L. 299(5), G1068–G1077 (2010)

    Article  CAS  Google Scholar 

  30. L. Xu, D. Huang, Q. Hu et al. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet. Brit. J. Nutr. 113(12), 1835–1843 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. A. Ejaz, L. Martinez-Guino, A.B. Goldfine et al. Dietary betaine supplementation increases fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice. Diabetes 65(4), 902–912 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Zhang, Y. Qi, Z. Aluo et al. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct. 10(1), 216–223 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. S.H. Zeisel, C.K. Da, Choline: an essential nutrient for public health. Nutr. Rev. 67(11), 615–623 (2009)

    Article  PubMed  Google Scholar 

  34. P.J. Raubenheimer, M.J. Nyirenda, B.R. Walker, A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 55(7), 2015–2020 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. X. Li, Y. Chen, J. Liu et al. Serum metabolic variables associated with impaired glucose tolerance induced by high-fat-high-cholesterol diet in macaca mulatta. Exp. Biol. Med. (Maywood) 237(11), 1310–1321 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. G. Wu, L. Zhang, T. Li et al. Choline deficiency attenuates body weight gain and improves glucose tolerance in ob/ob mice. J. Obes. 2012, 319172 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Y.M. Chen, Y. Liu, R.F. Zhou et al. Associations of gut-flora-dependent metabolite trimethylamine-n-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. R.L. Jacobs, Y. Zhao, D.P. Koonen et al. Impaired de novo choline synthesis explains why phosphatidylethanolamine n-methyltransferase-deficient mice are protected from diet-induced obesity. J. Biol. Chem. 285(29), 22403–22413 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A.A. Noga, D.E. Vance, A gender-specific role for phosphatidylethanolamine n-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J. Biol. Chem. 278(24), 21851–21859 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. S. Wan, J.N. van der Veen, N.J. Bakala et al. Hepatic pemt activity mediates liver health, weight gain, and insulin resistance. Faseb J. 33(10), 10986–10995 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. J. Vangipurapu, L. Fernandes Silva, T. Kuulasmaa et al. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care 43(6), 1319–1325 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. J.D. Finkelstein, Methionine metabolism in mammals. J. Nutr. Biochem. 1(5), 228–237 (1990)

    Article  CAS  PubMed  Google Scholar 

  43. M.D. Niculescu, S.H. Zeisel, Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J. Nutr. 132(8 Suppl), 2333S–2335S (2002)

    Article  CAS  PubMed  Google Scholar 

  44. H.D. Mcintyre, S. Colagiuri, G. Roglic et al. Diagnosis of gdm: a suggested consensus. Best Pract. Res. Clin. Obstet. Gynaecol. 29(2), 194–205 (2015)

    Article  PubMed  Google Scholar 

  45. L. Sun, X. Tan, X. Liang et al. Maternal betaine supplementation mitigates maternal high fat diet-induced NAFLD in offspring mice through gut microbiota. Nutrients 15(2), 284 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C.L. Meek, D. Tundidor, D.S. Feig et al. Novel biochemical markers of glycemia to predict pregnancy outcomes in women with type 1 diabetes. Diabetes Care 44(3), 681–689 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  47. S.J. Loomis, A. Köttgen, M. Li et al. Rare variants in slc5a10 are associated with serum 1, 5-anhydroglucitol (1, 5-ag) in the atherosclerosis risk in communities (aric) study. Sci. Rep.-Uk. 9(1), 5941 (2019)

    Article  ADS  Google Scholar 

  48. M. Dworacka, H. Winiarska, M. Szymanska et al. 1,5-anhydro-d-glucitol: a novel marker of glucose excursions. International journal of clinical practice. Supplement 129, 40–44 (2002)

    Google Scholar 

  49. K.M. Dungan, 1, 5-anhydroglucitol (glycomark™) as a marker of short-term glycemic control and glycemic excursions. Expert Rev. Mol. Diagn. 8(1), 9–19 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. T. Yamanouchi, N. Ogata, T. Tagaya et al. Clinical usefulness of serum 1, 5-anhydroglucitol in monitoring glycaemic control. Lancet 347(9014), 1514–1518 (1996)

    Article  CAS  PubMed  Google Scholar 

  51. P. Salahi, M. Alirezaei, A. Kheradmand et al. Betaine: a promising micronutrient in diet intervention for ameliorating maternal blood biochemical alterations in gestational diabetes mellitus. Int. J. Pept. Res. Ther. 26(2), 1177–1184 (2020)

    Article  CAS  Google Scholar 

  52. A.A. Sangouni, F. Pakravanfar, A. Ghadiri-Anari et al. The effect of l-carnitine supplementation on insulin resistance, sex hormone-binding globulin and lipid profile in overweight/obese women with polycystic ovary syndrome: a randomized clinical trial. Eur. J. Nutr. 61(3), 1199–1207 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful for the cooperation of the pregnant women who participated in these studies.

Funding

The research was supported by basic research project of Shenzhen Science and Technology Research Projects (JCYJ20220530162412029), Shenzhen Science and Technology Innovation Committee (KJYY20180703173402020), Shenzhen City and Longgang District Science and Technology Innovation Projects (LGKCYLWS2022008) and Guangdong Basic and Applied Basic Research Foundation (2023A1515030168).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. study design, data analysis and manuscript preparation; Y.Y. methodology; Y.S., X.W., S.H., and J.H. investigation; L.W. and F.W. review and editing. The final manuscript was reviewed and approved by all authors.

Corresponding authors

Correspondence to Lijun Wang or Fengxiang Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Informed consent was obtained from all subjects involved in the study.

Ethics approval

The current study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving research study participants were approved by the Ethical Committee of Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Approval NO. LGFYYXLLL-2022-039).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yao, Y., Sun, Y. et al. Serum betaine and dimethylglycine in mid-pregnancy and the risk of gestational diabetes mellitus: a case-control study. Endocrine (2024). https://doi.org/10.1007/s12020-024-03732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03732-4

Keywords

Navigation