Skip to main content

Advertisement

Log in

MicroRNA-130a-3p impedes the progression of papillary thyroid carcinoma through downregulation of KPNB1 by targeting PSME3

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background:

Papillary thyroid carcinoma (PTC) is the main type of thyroid cancer (THCA). Despite the good prognosis, some PTC patients may deteriorate into more aggressive disease, leading to poor survival. Our study aimed to explore the role of microRNA (miR)-130a-3p in regulating PTC.

Methods:

After transfection with miR-130a-3p-mimic, OE-PSME3, or miR-130a-3p-mimic + OE-KPNB1 in PTC cells (TPC-1), CCK-8, Transwell, scratch, and flow cytometry experiments were performed to analyze TPC-1 cell proliferation, invasion, migration, and apoptosis. Western blotting was used to detect proliferation or invasion-related protein markers (PCNA, E-cadherin, and N-cadherin). The RNA22 database, dual-luciferase reporter assay, and RNA pull-down assay were applied for the prediction and verification of the binding site between miR-130a-3p and PSME3. Pan-cancer software identified a positive correlation between PSME3 and KPNB1 in THCA. Co-immunoprecipitation was utilized to verify the interaction of PSME3 with KPNB1. Nude mice were transplanted with TPC-1 cells overexpressing miR-130a-3p. The tumors were isolated for detection of the expression of miR-130a-3p, PSME3, KPNB1, Ki-67, and CD31.

Results:

miR-130a-3p was lowly expressed in PTC cell lines. Upregulation of miR-130a-3p repressed the expression of PSME3 and KPNB1 and reduced the malignancy of TPC-1 cells in vitro, shown by inhibited cell proliferation, invasion, migration, and the expression of PCNA and N-cadherin. Also, overexpressed miR-130a-3p inhibited the growth of xenograft tumors in nude mice. miR-130a-3p bound to PSME3 which interacted with KPNB1.

Conclusion:

miR-130a-3p impedes the progression of PTC by downregulating PSME3/KPNB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Khatami, S.M. Tavangar, Liquid biopsy in thyroid cancer: new insight. Int. J. Hematol. Oncol. Stem Cell. Res. 12(3), 235–248 (2018)

    PubMed  PubMed Central  Google Scholar 

  2. Z.W. Baloch, V.A. LiVolsi, Special types of thyroid carcinoma. Histopathology 72(1), 40–52 (2018)

    Article  PubMed  Google Scholar 

  3. J. Mao, Q. Zhang, H. Zhang, K. Zheng, R. Wang, G. Wang, Risk factors for lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis. Front Endocrinol. (Lausanne) 11, 265 (2020)

    Article  PubMed  Google Scholar 

  4. A. Prete, P. Borges de Souza, S. Censi, M. Muzza, N. Nucci, M. Sponziello, Update on fundamental mechanisms of thyroid cancer. Front Endocrinol. (Lausanne) 11, 102 (2020)

    Article  PubMed  Google Scholar 

  5. M. Correia de Sousa, M. Gjorgjieva, D. Dolicka, C. Sobolewski, M. Foti, Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci. 20(24), (2019).

  6. R. Rupaimoole, F.J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16(3), 203–222 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. Y.T. Fu, H.B. Zheng, D.Q. Zhang, L. Zhou, H. Sun, MicroRNA-1266 suppresses papillary thyroid carcinoma cell metastasis and growth via targeting FGFR2. Eur. Rev. Med. Pharmacol. Sci. 22(11), 3430–3438 (2018)

    PubMed  Google Scholar 

  8. F. Liu, K. Lou, X. Zhao, J. Zhang, W. Chen, Y. Qian, Y. Zhao, Y. Zhu, Y. Zhang, miR-214 regulates papillary thyroid carcinoma cell proliferation and metastasis by targeting PSMD10. Int. J. Mol. Med. 42(6), 3027–3036 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. W.J. Wang, Y. Yuan, D. Zhang, P. Liu, F. Liu, miR-671-5p repressed progression of papillary thyroid carcinoma via TRIM14. Kaohsiung J. Med. Sci. 37(11), 983–990 (2021)

    Article  PubMed  Google Scholar 

  10. X. Wen, J. Du, X. Wang, Circ_0039411 promotes papillary thyroid carcinoma development through mediating the miR-423-5p/SOX4 signaling. Int. J. Biol. Markers 36(4), 10–20 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. W. Hu, X. Zheng, J. Liu, M. Zhang, Y. Liang, M. Song, MicroRNA MiR-130a-3p promotes gastric cancer by targeting Glucosaminyl N-acetyl transferase 4 (GCNT4) to regulate the TGF-beta1/SMAD3 pathway. Bioengineered 12(2), 11634–11647 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L. Liu, P. Wang, Y.S. Wang, Y.N. Zhang, C. Li, Z.Y. Yang, Z.H. Liu, T.Z. Zhan, J. Xu, C.M. Xia, MiR-130a-3p alleviates liver fibrosis by suppressing hscs activation and skewing macrophage to Ly6C(lo) phenotype. Front Immunol. 12, 696069 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. Luo, J. Wang, X. Wei, S. Wang, A. Wang, Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by miR-130a-3p/TCF4. Life Sci. 240, 117019 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. G.L. Song, M. Xiao, X.Y. Wan, J. Deng, J.D. Ling, Y.G. Tian, M. Li, J. Yin, R.Y. Zheng, Y. Tang, G.Y. Liu, MiR-130a-3p suppresses colorectal cancer growth by targeting Wnt Family Member 1 (WNT1). Bioengineered 12(1), 8407–8418 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Wang, M. Shi, Z. Hong, J. Kang, H. Pan, C. Yan, MiR-130a-3p has protective effects in alzheimer’s disease via targeting DAPK1. Am. J. Alzheimers Dis. Other Demen 36, 15333175211020572 (2021)

    Article  PubMed  Google Scholar 

  16. J. Zhao, H. Wang, J. Zhou, J. Qian, H. Yang, Y. Zhou, H. Ding, Y. Gong, X. Qi, Y. Jiao, P. Ying, L. Tang, Y. Sun, W. Zhu, miR-130a-3p, a preclinical therapeutic target for Crohn’s disease. J. Crohns Colitis 15(4), 647–664 (2021)

    Article  PubMed  Google Scholar 

  17. G. Yin, W. Kong, S. Zheng, Y. Shan, J. Zhang, R. Ying, H. Wu, Exosomal miR-130a-3p promotes the progression of differentiated thyroid cancer by targeting insulin-like growth factor 1. Oncol. Lett. 21(4), 283 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. Fesquet, D. Lleres, C. Grimaud, C. Vigano, F. Mechali, S. Boulon, O. Coux, C. Bonne-Andrea, V. Baldin, The 20S proteasome activator PA28gamma controls the compaction of chromatin. J. Cell Sci. 134(3), (2021).

  19. C. Jiao, L. Li, P. Zhang, L. Zhang, K. Li, R. Fang, L. Yuan, K. Shi, L. Pan, Q. Guo, X. Gao, G. Chen, S. Xu, Q. Wang, D. Zuo, W. Wu, S. Qiao, X. Wang, R. Moses, J. Xiao, L. Li, Y. Dang, X. Li, REGgamma ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-beta pathway. Cell Death Differ. 27(2), 497–508 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. M.Z. Bhatti, L. Pan, T. Wang, P. Shi, L. Li, REGgamma potentiates TGF-beta/Smad signal dependent epithelial-mesenchymal transition in thyroid cancer cells. Cell Signal 64, 109412 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. T. Okamura, S. Taniguchi, T. Ohkura, A. Yoshida, H. Shimizu, M. Sakai, H. Maeta, H. Fukui, Y. Ueta, I. Hisatome, C. Shigemasa, Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. J. Clin. Endocrinol. Metab. 88(3), 1374–1383 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. J. Guo, J. Hao, H. Jiang, J. Jin, H. Wu, Z. Jin, Z. Li, Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Myc-glycolysis signaling axis. Cancer Lett 38, 6161–6167 (2017)

    Google Scholar 

  23. M. Jiang, Y. Zhu, H. Yu, Ginsenoside 20(S)-Rg3 suppresses cell viability in esophageal squamous cell carcinoma via modulating miR-324-5p-targeted PSME3. Hum. Exp. Toxicol. 40(11), 1974–1984 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. C. Liu, J. Yang, H. Wu, J. Li, Downregulated miR-585-3p promotes cell growth and proliferation in colon cancer by upregulating PSME3. Onco. Targets Ther. 12, 6525–6534 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Qi, W. He, REGgamma is associated with lymph node metastasis and T-stage in papillary thyroid carcinoma. Med. Sci. Monit 24, 1373–1378 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L.E. Kapinos, B. Huang, C. Rencurel, R.Y.H. Lim, Karyopherins regulate nuclear pore complex barrier and transport function. J. Cell Biol. 216(11), 3609–3624 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Quan, Z.L. Ji, X. Wang, A.M. Tartakoff, T. Tao, Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol. Cell Proteom. 7(7), 1254–1269 (2008)

    Article  CAS  Google Scholar 

  28. W. Du, J. Zhu, Y. Zeng, T. Liu, Y. Zhang, T. Cai, Y. Fu, W. Zhang, R. Zhang, Z. Liu, J.A. Huang, KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ 28(4), 1284–1300 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. M. Kodama, T. Kodama, J.Y. Newberg, H. Katayama, M. Kobayashi, S.M. Hanash, K. Yoshihara, Z. Wei, J.C. Tien, R. Rangel, K. Hashimoto, S. Mabuchi, K. Sawada, T. Kimura, N.G. Copeland, N.A. Jenkins, In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA. 114(35), E7301–E7310 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Yang, Y. Guo, C. Lu, R. Zhang, Y. Wang, L. Luo, Y. Zhang, C.H. Chu, K.J. Wang, S. Obbad, W. Yan, X. Li, Inhibition of Karyopherin beta 1 suppresses prostate cancer growth. Oncogene 38(24), 4700–4714 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z.C. Zhu, J.W. Liu, K. Li, J. Zheng, Z.Q. Xiong, KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene 37(22), 2936–2952 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Jurikova, L. Danihel, S. Polak, I. Varga, Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 118(5), 544–552 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. C.Y. Loh, J.Y. Chai, T.F. Tang, W.F. Wong, G. Sethi, M.K. Shanmugam, P.P. Chong, C.Y. Looi, The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells 8(10), (2019).

  34. N.M. Aiello, Y. Kang, Context-dependent EMT programs in cancer metastasis. J Exp Med 216(5), 1016–1026 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M.I. Abdullah, S.M. Junit, K.L. Ng, J.J. Jayapalan, B. Karikalan, O.H. Hashim, Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int. J. Med. Sci. 16(3), 450–460 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Ulisse, E. Baldini, A. Lauro, D. Pironi, D. Tripodi, E. Lori, I.C. Ferent, M.I. Amabile, A. Catania, F.M. Di Matteo, F. Forte, A. Santoro, P. Palumbo, V. D’Andrea, S. Sorrenti, Papillary thyroid cancer prognosis: an evolving field. Cancers (Basel) 13(21), (2021).

  37. X. Kong, J. Zhang, J. Li, J. Shao, L. Fang, MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem. Biophys. Res. Commun. 501(2), 486–493 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. J. Zhu, Y. Luo, Y. Zhao, Y. Kong, H. Zheng, Y. Li, B. Gao, L. Ai, H. Huang, J. Huang, Z. Li, C. Chen, circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFbetaR1/VEGF-D signaling. Mol. Ther. 29(5), 1838–1852 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B. Hu, H. Zhang, Z. Wang, F. Zhang, H. Wei, L. Li, LncRNA CCAT1/miR-130a-3p axis increases cisplatin resistance in non-small-cell lung cancer cell line by targeting SOX4. Cancer Biol. Ther. 18(12), 974–983 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. H. Wang, X. Huo, X.R. Yang, J. He, L. Cheng, N. Wang, X. Deng, H. Jin, N. Wang, C. Wang, F. Zhao, J. Fang, M. Yao, J. Fan, W. Qin, STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol. Cancer 16(1), 136 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Q. Fan, T. Huang, X. Sun, X. Yang, J. Wang, Y. Liu, T. Ni, S. Gu, Y. Li, Y. Wang, miR-130a-3p promotes cell proliferation and invasion by targeting estrogen receptor alpha and androgen receptor in cervical cancer. Exp. Ther. Med. 21(5), 414 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Wang, X. Wang, W. Liu, MicroRNA130a3p promotes the proliferation and inhibits the apoptosis of cervical cancer cells via negative regulation of RUNX3. Mol. Med. Rep. 22(4), 2990–3000 (2020)

    CAS  PubMed  Google Scholar 

  43. X. Dai, X. Guo, J. Liu, A. Cheng, X. Peng, L. Zha, Z. Wang, Circular RNA circGRAMD1B inhibits gastric cancer progression by sponging miR-130a-3p and regulating PTEN and p21 expression. Aging (Albany NY) 11(21), 9689–9708 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. E.A. Toraih, R.M. Elshazli, L.N. Trinh, M.H. Hussein, A.A. Attia, E.M.L. Ruiz, M. Zerfaoui, M.S. Fawzy, E. Kandil, Diagnostic and prognostic performance of liquid biopsy-derived exosomal MicroRNAs in thyroid cancer patients: a systematic review and meta-analysis. Cancers (Basel) 13(17), (2021).

  45. W. Song, C. Guo, J. Chen, S. Duan, Y. Hu, Y. Zou, H. Chi, J. Geng, J. Zhou, Silencing PSME3 induces colorectal cancer radiosensitivity by downregulating the expression of cyclin B1 and CKD1. Exp. Biol. Med. (Maywood) 244(16), 1409–1418 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. L. Yu, J.J. Li, X.L. Liang, H. Wu, Z. Liang, PSME3 promotes TGFB1 secretion by pancreatic cancer cells to induce pancreatic stellate cell proliferation. J. Cancer 10(9), 2128–2138 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Z. Yi, D. Yang, X. Liao, F. Guo, Y. Wang, X. Wang, PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and immunosuppression in breast cancer. Exp. Cell Res. 358(2), 87–93 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Z.C. Zhu, J.W. Liu, C. Yang, M.J. Li, R.J. Wu, Z.Q. Xiong, Targeting KPNB1 overcomes TRAIL resistance by regulating DR5, Mcl-1 and FLIP in glioblastoma cells. Cell Death Dis. 10(2), 118 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for all the contributors.

Author contributions

K.H.Y. and W.Y. conceived the ideas; designed the experiments. W.Y., X.J.M. and Z.X.D. performed the experiments. W.Y. and X.J.M. analyzed the data. W.Y. and Z.X.D. provided critical materials. X.J.M. and Z.X.D. wrote the manuscript. K.H.Y. supervised the study. All the authors have read and approved the final version for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Kuang.

Ethics declarations

Ethical approval

All animal experiments abided by the rules and regulations for the management of laboratory animals and obtained approval from the Ethics Committee of the First Affiliated Hospital of Harbin Medical University (Approval No. 2022-DWSYLLCZ-46).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, J., Zhu, X. et al. MicroRNA-130a-3p impedes the progression of papillary thyroid carcinoma through downregulation of KPNB1 by targeting PSME3. Endocrine 82, 96–107 (2023). https://doi.org/10.1007/s12020-023-03383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03383-x

Keywords

Navigation