Skip to main content
Log in

Follow, consider, and catch: second primary tumors in acromegaly patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background and aim

The risk of second primary tumors is increased in general cancer population, however, there is no data on acromegalic cancer patients in this regard. The aim of this study is to determine the prevalence of patients with two primary tumors among acromegalic cancer patients and to evaluate if patients with two primaries have distinct clinical characteristics or risk factors compared to those with one.

Methods

This is a single-center retrospective cohort study. The study included 63 patients with at least one malignant tumor out of a total number of 394 acromegaly patients. Patients with multiple primary neoplasms were evaluated in detail.

Results

This study revealed a 16% cancer prevalence in acromegaly patients, with 14% (9/63) having two primary neoplasms. Papillary thyroid carcinoma was the most prevalent tumor in the entire cancer cohort (41%, 26/63), and in the group of patients with two primaries (44%, 4/9). Patients with two primary tumors were older than those with one when diagnosed with acromegaly (48.3 ± 16.6 vs. 43.3 ± 10.7 years), which might be attributed to a longer diagnostic delay (median of 4.5 vs. 2 years). The period between the onset of acromegaly symptoms and diagnosis was not associated with earlier cancer diagnosis. No relationship between circulating GH or IGF-I levels and the number of neoplasms was found.

Conclusion

The development of second primary tumors in acromegalic patients with cancer diagnosis is not rare. Acromegalic cancer patients should be closely monitored for new symptoms or signs that could be associated with second primary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Colao, L.F.S. Grasso, A. Giustina et al. Acromegaly. Nat. Rev. Dis. Prim. 5(1), 20 (2019). https://doi.org/10.1038/s41572-019-0071-6.

    Article  PubMed  Google Scholar 

  2. S. Dagdelen, N. Cinar, T. Erbas, Increased thyroid cancer risk in acromegaly. Pituitary 17(4), 299–306 (2014). https://doi.org/10.1007/s11102-013-0501-5.

    Article  PubMed  Google Scholar 

  3. D. Petroff, A. Tonjes, M. Grussendorf et al. The Incidence of Cancer Among Acromegaly Patients: Results From the German Acromegaly Registry. J. Clin. Endocrinol. Metab. 100(10), 3894–3902 (2015). https://doi.org/10.1210/jc.2015-2372.

    Article  CAS  PubMed  Google Scholar 

  4. M. Terzolo, G. Reimondo, P. Berchialla et al. Acromegaly is associated with increased cancer risk: a survey in Italy. Endocr. Relat. Cancer. 24(9), 495–504 (2017). https://doi.org/10.1530/ERC-16-0553.

    Article  PubMed  Google Scholar 

  5. D. Esposito, O. Ragnarsson, G. Johannsson et al. Incidence of Benign and Malignant Tumors in Patients With Acromegaly Is Increased: A Nationwide Population-based Study. J. Clin. Endocrinol. Metab. 106(12), 3487–3496 (2021). https://doi.org/10.1210/clinem/dgab560.

    Article  PubMed  Google Scholar 

  6. M. Fleseriu, A. Barkan, M. Del Pilar Schneider et al. Prevalence of comorbidities and concomitant medication use in acromegaly: analysis of real-world data from the United States. Pituitary 25(2), 296–307 (2022). https://doi.org/10.1007/s11102-021-01198-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. C.L. Boguszewski, J. Ayuk, MANAGEMENT OF ENDOCRINE DISEASE: Acromegaly and cancer: an old debate revisited. Eur. J. Endocrinol. 175(4), R147–R156 (2016). https://doi.org/10.1530/EJE-16-0178.

    Article  CAS  PubMed  Google Scholar 

  8. M. Terzolo, S. Puglisi, G. Reimondo et al. Thyroid and colorectal cancer screening in acromegaly patients: should it be different from that in the general population? Eur. J. Endocrinol. 183(4), D1–D13 (2020). https://doi.org/10.1530/EJE-19-1009.

    Article  CAS  PubMed  Google Scholar 

  9. L. Katznelson, E.R. Laws Jr., S. Melmed et al. Acromegaly: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 99(11), 3933–3951 (2014). https://doi.org/10.1210/jc.2014-2700.

    Article  CAS  PubMed  Google Scholar 

  10. C.C. Murphy, D.E. Gerber, S.L. Pruitt, Prevalence of Prior Cancer Among Persons Newly Diagnosed With Cancer: An Initial Report From the Surveillance, Epidemiology, and End Results Program. JAMA Oncol. 4(6), 832–836 (2018). https://doi.org/10.1001/jamaoncol.2017.3605.

    Article  PubMed  PubMed Central  Google Scholar 

  11. H. Sung, N. Hyun, C.R. Leach et al. Association of First Primary Cancer With Risk of Subsequent Primary Cancer Among Survivors of Adult-Onset Cancers in the United States. JAMA 324(24), 2521–2535 (2020). https://doi.org/10.1001/jama.2020.23130.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Copur M.S., Manapuram S. Multiple Primary Tumors Over a Lifetime. Oncology (Williston Park). 2019;33(7).

  13. V. Popovic, S. Damjanovic, D. Micic et al. Increased incidence of neoplasia in patients with pituitary adenomas. The Pituitary Study Group. Clin. Endocrinol. (Oxf.) 49(4), 441–445 (1998). https://doi.org/10.1046/j.1365-2265.1998.00536.x.

    Article  CAS  PubMed  Google Scholar 

  14. L. Maione, T. Brue, A. Beckers et al. Changes in the management and comorbidities of acromegaly over three decades: the French Acromegaly Registry. Eur. J. Endocrinol. 176(5), 645–655 (2017). https://doi.org/10.1530/EJE-16-1064.

    Article  CAS  PubMed  Google Scholar 

  15. K. Wolinski, A. Stangierski, K. Dyrda et al. Risk of malignant neoplasms in acromegaly: a case-control study. J. Endocrinol. Invest. 40(3), 319–322 (2017). https://doi.org/10.1007/s40618-016-0565-y.

    Article  CAS  PubMed  Google Scholar 

  16. B. Ucan, M. Kizilgul, A.C. Karci et al. The Prevalence of Cancer and Its Relation to Disease Activity in Patients with Acromegaly: Two Centers’ Experience. Endocr. Pract. 27(1), 51–55 (2021). https://doi.org/10.4158/EP-2020-0398.

    Article  PubMed  Google Scholar 

  17. M.C. dos Santos, G.C. Nascimento, A.G. Nascimento et al. Thyroid cancer in patients with acromegaly: a case-control study. Pituitary 16(1), 109–114 (2013). https://doi.org/10.1007/s11102-012-0383-y.

    Article  PubMed  Google Scholar 

  18. J. Dal, M.Z. Leisner, K. Hermansen et al. Cancer Incidence in Patients With Acromegaly: A Cohort Study and Meta-Analysis of the Literature. J. Clin. Endocrinol. Metab. 103(6), 2182–2188 (2018). https://doi.org/10.1210/jc.2017-02457.

    Article  PubMed  Google Scholar 

  19. H.K. Kim, J.S. Lee, M.H. Park et al. Tumorigenesis of papillary thyroid cancer is not BRAF-dependent in patients with acromegaly. PLoS One. 9(10), e110241 (2014). https://doi.org/10.1371/journal.pone.0110241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Aydin, C. Aydin, S. Dagdelen et al. Genetic Alterations in Differentiated Thyroid Cancer Patients with Acromegaly. Exp. Clin. Endocrinol. Diabetes. 124(3), 198–202 (2016). https://doi.org/10.1055/s-0035-1565061.

    Article  CAS  PubMed  Google Scholar 

  21. F.E. Keskin, H.M. Ozkaya, S. Ferahman et al. The Role of Different Molecular Markers in Papillary Thyroid Cancer Patients with Acromegaly. Exp. Clin. Endocrinol. Diabetes. 127(7), 437–444 (2019). https://doi.org/10.1055/a-0629-9223.

    Article  CAS  PubMed  Google Scholar 

  22. S.C. Dogansen, A. Salmaslioglu, G.Y. Yalin et al. Evaluation of the natural course of thyroid nodules in patients with acromegaly. Pituitary 22(1), 29–36 (2019). https://doi.org/10.1007/s11102-018-0923-1.

    Article  CAS  PubMed  Google Scholar 

  23. B.R. Haugen, E.K. Alexander, K.C. Bible et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26(1), 1–133 (2016). https://doi.org/10.1089/thy.2015.0020.

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Li, L. Dal Maso, S. Vaccarella, Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 8(6), 468–470 (2020). https://doi.org/10.1016/S2213-8587(20)30115-7.

    Article  PubMed  Google Scholar 

  25. S.R. Cairns, J.H. Scholefield, R.J. Steele et al. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut 59(5), 666–689 (2010). https://doi.org/10.1136/gut.2009.179804.

    Article  PubMed  Google Scholar 

  26. K. Lois, J. Bukowczan, P. Perros et al. The role of colonoscopic screening in acromegaly revisited: review of current literature and practice guidelines. Pituitary 18(4), 568–574 (2015). https://doi.org/10.1007/s11102-014-0586-5.

    Article  CAS  PubMed  Google Scholar 

  27. Republic of Türkiye Ministery of Health, Department of Public Health, National Standards for Cancer Screening. https://hsgm.saglik.gov.tr/tr/kanser-tarama-standartlari/listesi/meme-kanseri-tarama-program%C4%B1-ulusal-standartlar%C4%B1.html.

  28. In: nd, editor. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention. WHO Guidelines Approved by the Guidelines Review Committee. Geneva2021.

  29. C. Parker, E. Castro, K. Fizazi et al. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31(9), 1119–1134 (2020). https://doi.org/10.1016/j.annonc.2020.06.011.

    Article  CAS  PubMed  Google Scholar 

  30. D. Baris, G. Gridley, E. Ron et al. Acromegaly and cancer risk: a cohort study in Sweden and Denmark. Cancer Causes Control. 13(5), 395–400 (2002). https://doi.org/10.1023/a:1015713732717.

    Article  CAS  PubMed  Google Scholar 

  31. A. Mestron, S.M. Webb, R. Astorga et al. Epidemiology, clinical characteristics, outcome, morbidity and mortality in acromegaly based on the Spanish Acromegaly Registry (Registro Espanol de Acromegalia, REA). Eur. J. Endocrinol. 151(4), 439–446 (2004). https://doi.org/10.1530/eje.0.1510439.

    Article  CAS  PubMed  Google Scholar 

  32. R. Kauppinen-Makelin, T. Sane, M.J. Valimaki et al. Increased cancer incidence in acromegaly–a nationwide survey. Clin. Endocrinol. (Oxf.). 72(2), 278–279 (2010). https://doi.org/10.1111/j.1365-2265.2009.03619.x.

    Article  PubMed  Google Scholar 

  33. J.C. Wu, W.C. Huang, H.K. Chang et al. Natural History of Acromegaly: Incidences, Re-operations, Cancers, and Mortality Rates in a National Cohort. Neuroendocrinology 110(11-12), 977–987 (2020). https://doi.org/10.1159/000505332.

    Article  CAS  PubMed  Google Scholar 

  34. S.M. Orme, R.J. McNally, R.A. Cartwright et al. Mortality and cancer incidence in acromegaly: a retrospective cohort study. United Kingdom Acromegaly Study Group. J. Clin. Endocrinol. Metab. 83(8), 2730–2734 (1998). https://doi.org/10.1210/jcem.83.8.5007.

    Article  CAS  PubMed  Google Scholar 

  35. Global Cancer Statistics 2020 (GLOBOCAN) Fact Sheets. https://gco.iarc.fr/today/data/factsheets/populations/792-turkey-fact-sheets.pdf 2020.

  36. U. Cho, O. Mete, M.H. Kim et al. Molecular correlates and rate of lymph node metastasis of non-invasive follicular thyroid neoplasm with papillary-like nuclear features and invasive follicular variant papillary thyroid carcinoma: the impact of rigid criteria to distinguish non-invasive follicular thyroid neoplasm with papillary-like nuclear features. Mod. Pathol. 30(6), 810–825 (2017). https://doi.org/10.1038/modpathol.2017.9.

    Article  CAS  PubMed  Google Scholar 

  37. R.P. Jury, B.J. Thibodeau, L.E. Fortier et al. Gene expression changes associated with the progression of intraductal papillary mucinous neoplasms. Pancreas 41(4), 611–618 (2012). https://doi.org/10.1097/MPA.0b013e31823d7b36.

    Article  CAS  PubMed  Google Scholar 

  38. A. Shay, A. Ganti, A. Raman et al. Survival in low-grade and high-grade sinonasal adenocarcinoma: A national cancer database analysis. Laryngoscope 130(1), E1–E10 (2020). https://doi.org/10.1002/lary.28052.

    Article  PubMed  Google Scholar 

  39. H.K. Park, S. Zhang, M.K. Wong et al. Clinical presentation of epithelioid angiomyolipoma. Int J. Urol. 14(1), 21–25 (2007). https://doi.org/10.1111/j.1442-2042.2006.01665.x.

    Article  PubMed  Google Scholar 

  40. D.R. Youlden, P.D. Baade, The relative risk of second primary cancers in Queensland, Australia: a retrospective cohort study. BMC Cancer. 11, 83 (2011). https://doi.org/10.1186/1471-2407-11-83.

    Article  PubMed  PubMed Central  Google Scholar 

  41. S.F. Nielsen, B.G. Nordestgaard, S.E. Bojesen, Associations between first and second primary cancers: a population-based study. CMAJ 184(1), E57–E69 (2012). https://doi.org/10.1503/cmaj.110167.

    Article  PubMed  PubMed Central  Google Scholar 

  42. A. Feller, K.L. Matthes, A. Bordoni et al. The relative risk of second primary cancers in Switzerland: a population-based retrospective cohort study. BMC Cancer. 20(1), 51 (2020). https://doi.org/10.1186/s12885-019-6452-0.

    Article  PubMed  PubMed Central  Google Scholar 

  43. M. Corkum, J.A. Hayden, G. Kephart et al. Screening for new primary cancers in cancer survivors compared to non-cancer controls: a systematic review and meta-analysis. J. Cancer Surviv. 7(3), 455–463 (2013). https://doi.org/10.1007/s11764-013-0278-6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. K.R. Joseph, S. Edirimanne, G.D. Eslick, The association between breast cancer and thyroid cancer: a meta-analysis. Breast Cancer Res Treat. 152(1), 173–181 (2015). https://doi.org/10.1007/s10549-015-3456-6.

    Article  PubMed  Google Scholar 

  45. V.L. Van Fossen, S.M. Wilhelm, J.L. Eaton et al. Association of thyroid, breast and renal cell cancer: a population-based study of the prevalence of second malignancies. Ann. Surg. Oncol. 20(4), 1341–1347 (2013). https://doi.org/10.1245/s10434-012-2718-3.

    Article  PubMed  Google Scholar 

  46. G. Lal, M. Groff, J.R. Howe et al. Risk of subsequent primary thyroid cancer after another malignancy: latency trends in a population-based study. Ann. Surg. Oncol. 19(6), 1887–1896 (2012). https://doi.org/10.1245/s10434-011-2193-2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. K. Hirvonen, M. Rantanen, A. Haapaniemi et al. Second primary cancer after major salivary gland carcinoma. Head. Neck 40(2), 251–258 (2018). https://doi.org/10.1002/hed.24937.

    Article  PubMed  Google Scholar 

  48. M.A. Pogrel, L.S. Hansen, Second primary tumor associated with salivary gland cancer. Oral. Surg. Oral. Med Oral. Pathol. 58(1), 71–75 (1984). https://doi.org/10.1016/0030-4220(84)90367-0.

    Article  CAS  PubMed  Google Scholar 

  49. A.P. Brown, J. Chen, Y.J. Hitchcock et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 93(2), 504–515 (2008). https://doi.org/10.1210/jc.2007-1154.

    Article  CAS  PubMed  Google Scholar 

  50. M. Kim, H. Kim, S. Park, et al. Risk factors for second primary malignancies following thyroid cancer: a nationwide cohort study. Eur J Endocrinol. 2022. https://doi.org/10.1530/EJE-21-1208.

  51. C. Rubino, F. de Vathaire, M.E. Dottorini et al. Second primary malignancies in thyroid cancer patients. Br. J. Cancer 89(9), 1638–1644 (2003). https://doi.org/10.1038/sj.bjc.6601319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. C. Kim, X. Bi, D. Pan et al. The risk of second cancers after diagnosis of primary thyroid cancer is elevated in thyroid microcarcinomas. Thyroid 23(5), 575–582 (2013). https://doi.org/10.1089/thy.2011.0406.

    Article  PubMed  PubMed Central  Google Scholar 

  53. M. Silva-Vieira, S. Carrilho Vaz, S. Esteves et al. Second Primary Cancer in Patients with Differentiated Thyroid Cancer: Does Radioiodine Play a Role? Thyroid 27(8), 1068–1076 (2017). https://doi.org/10.1089/thy.2016.0655.

    Article  CAS  PubMed  Google Scholar 

  54. V. Cappagli, A. Caldarella, G. Manneschi et al. Nonthyroidal second primary malignancies in differentiated thyroid cancer patients: Is the incidence increased comparing to the general population and could it be a radioiodine therapy consequence? Int J. Cancer 147(10), 2838–2846 (2020). https://doi.org/10.1002/ijc.33116.

    Article  CAS  PubMed  Google Scholar 

  55. P.J. Cimino, Y.V. Sychev, L.F. Gonzalez-Cuyar et al. Primary Gliosarcoma of the Optic Nerve: A Unique Adult Optic Pathway Glioma. Ophthalmic Plast. Reconstr. Surg. 33(4), e88–e92 (2017). https://doi.org/10.1097/IOP.0000000000000798.

    Article  PubMed  Google Scholar 

  56. R.M.A. Prado, B.P. Tamura, G.D. Gomez, Optic pathway gliosarcoma: A very rare location for a rare disease. Radio. Case Rep. 16(7), 1665–1668 (2021). https://doi.org/10.1016/j.radcr.2021.04.001.

    Article  Google Scholar 

  57. R. Tuna, B. Carvalho, L. Castro, et al. Primary gliosarcoma of the optic nerve – Case report. Interdisciplinary Neurosurgery. 2020;20. https://doi.org/10.1016/j.inat.2020.100688.

  58. S.J. Han, I. Yang, T. Tihan et al. Secondary gliosarcoma: a review of clinical features and pathological diagnosis. J. Neurosurg. 112(1), 26–32 (2010). https://doi.org/10.3171/2009.3.JNS081081.

    Article  PubMed  Google Scholar 

  59. M. Domenech-Santasusana, J. Carles, A. Goday et al. Association of acromegaly and two malignancies: colorectal cancer and non-Hodgkin’s lymphoma. Ann. Oncol. 5(7), 659 (1994). https://doi.org/10.1093/oxfordjournals.annonc.a058944.

    Article  CAS  PubMed  Google Scholar 

  60. A. Taslipinar, E. Bolu, L. Kebapcilar et al. Insulin-like growth factor-1 is essential to the increased mortality caused by excess growth hormone: a case of thyroid cancer and non-Hodgkin’s lymphoma in a patient with pituitary acromegaly. Med Oncol. 26(1), 62–66 (2009). https://doi.org/10.1007/s12032-008-9084-9.

    Article  CAS  PubMed  Google Scholar 

  61. N. Sekizawa, E. Hayakawa, K. Tsuchiya et al. Acromegaly associated with multiple tumors. Intern Med. 48(15), 1273–1278 (2009). https://doi.org/10.2169/internalmedicine.48.1916.

    Article  PubMed  Google Scholar 

  62. K. Kato, Y. Takeshita, H. Misu et al. Duodenal adenocarcinoma with neuroendocrine features in a patient with acromegaly and thyroid papillary adenocarcinoma: a unique combination of endocrine neoplasia. Endocr. J. 59(9), 791–796 (2012). https://doi.org/10.1507/endocrj.ej11-0324.

    Article  CAS  PubMed  Google Scholar 

  63. C.L. Boguszewski, T.M. Fighera, A. Bornschein et al. Genetic studies in a coexistence of acromegaly, pheochromocytoma, gastrointestinal stromal tumor (GIST) and thyroid follicular adenoma. Arq. Bras. Endocrinol. Metab. 56(8), 507–512 (2012). https://doi.org/10.1590/s0004-27302012000800008.

    Article  Google Scholar 

  64. Fountas A., Chai S.T., Ayuk J., et al. A rare challenging case of co-existent craniopharyngioma, acromegaly and squamous cell lung cancer. Endocr. Diab. Metab Case Rep. 2018;2018. https://doi.org/10.1530/EDM-18-0018.

  65. A. Jawiarczyk-Przybylowska, B. Wojtczak, J. Whitworth et al. Acromegaly associated with GIST, non-small cell lung carcinoma, clear cell renal carcinoma, multiple myeloma, medulla oblongata tumour, adrenal adenoma, and follicular thyroid nodules. Endokrynol. Pol. 70(2), 213–217 (2019). https://doi.org/10.5603/EP.a2019.0005.

    Article  PubMed  Google Scholar 

  66. R.K. Junnila, E.O. List, D.E. Berryman et al. The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 9(6), 366–376 (2013). https://doi.org/10.1038/nrendo.2013.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. R. Steuerman, O. Shevah, Z. Laron, Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur. J. Endocrinol. 164(4), 485–489 (2011). https://doi.org/10.1530/EJE-10-0859.

    Article  CAS  PubMed  Google Scholar 

  68. A.L. Brittain, R. Basu, Y. Qian et al. Growth Hormone and the Epithelial-to-Mesenchymal Transition. J. Clin. Endocrinol. Metab. 102(10), 3662–3673 (2017). https://doi.org/10.1210/jc.2017-01000.

    Article  PubMed  Google Scholar 

  69. P.E. Clayton, I. Banerjee, P.G. Murray et al. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat. Rev. Endocrinol. 7(1), 11–24 (2011). https://doi.org/10.1038/nrendo.2010.171.

    Article  CAS  PubMed  Google Scholar 

  70. S. Yakar, D. Leroith, P. Brodt, The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: Lessons from animal models. Cytokine Growth Factor Rev. 16(4-5), 407–420 (2005). https://doi.org/10.1016/j.cytogfr.2005.01.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Hanife Oguz.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Hacettepe University (Date: 19.03.2019/No: GO 19/303).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguz, S.H., Firlatan, B., Sendur, S.N. et al. Follow, consider, and catch: second primary tumors in acromegaly patients. Endocrine 80, 160–173 (2023). https://doi.org/10.1007/s12020-022-03282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03282-7

Keywords

Navigation