Skip to main content

Advertisement

Log in

Interleukin-1 receptor antagonist decreases cerebrospinal fluid nitric oxide levels and increases vasopressin secretion in the late phase of sepsis in rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the effect of IL-1ra (an Interleukin-1 receptor antagonist) on sepsis-induced alterations in vasopressin (AVP) and nitric oxide (NO) levels. In addition, IL-1ra effect on the hypothalamic nitric oxide synthase (NOS) activities and survival rate was also analyzed. After Wistar rats were intracerebroventricular injected with IL-1ra (9 pmol) or vehicle (PBS 0.01 M), sepsis was induced by cecal-ligation and puncture (CLP). Blood, CSF, and hypothalamic samples were collected from different groups of rats (n = 8/group) after 4, 6, and 24 h. AVP and NO levels were greatly increased in CLP. Both total NOS and inducible NOS (iNOS) activities were also greatly increased in CLP rats. These changes in AVP, NO, and NOS were not observed in sham-operated control rats. IL-1ra administration did not alter plasma AVP levels after 4 and 6 h as compared to vehicle in CLP animals but after 24 h were significantly (P < 0.01) higher in IL-1ra-treated animals. IL-1ra administration significantly (P < 0.01) decreased NO concentration in CSF but not in plasma. Both total NOS and iNOS activities were also significantly decreased by IL-1ra at 24 h in CLP animals. Moreover, the 24 h survival rate of IL-1ra-treated rats increased by 38 % in comparison to vehicle administered animals. The central administration of IL-1ra increased AVP secretion in the late phase of sepsis which was beneficial for survival. We believe that one of the mechanisms for this effect of IL-1ra is through reduction of NO concentration in CSF and hence lower hypothalamic iNOS activities in the septic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.C. Bone, The pathogenesis of sepsis. Ann. Intern. Med. 115, 457–469 (1991)

    Article  CAS  PubMed  Google Scholar 

  2. R.C. Bone, W.J. Sibbald, C.L. Sprung, The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 101, 1481–1483 (1992)

    Article  CAS  PubMed  Google Scholar 

  3. J.L. Vincent, H.A. Korkut, Defining sepsis. Clin. Chest Med. 29, 585–590 (2008)

    Article  PubMed  Google Scholar 

  4. D. Annane, E. Bellissant, J.M. Cavaillon, Septic shock. Lancet 365, 63–78 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. K.J. Kovacs, Neurohypophyseal hormones in the integration of physiological responses to immune challenges. Prog. Brain Res. 139, 127–146 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. S.M. McCann, M. Kimura, S. Karanth, W.H. Yu, C.A. Mastronardi, V. Rettori, The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann. N. Y. Acad. Sci. 917, 4–18 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. J.E. Parrillo, Pathogenetic mechanisms of septic shock. N. Engl. J. Med. 328, 1471–1477 (1993)

    Article  CAS  PubMed  Google Scholar 

  8. M.J.A. Rocha, G.R. Oliveira, P.B. Farias-Corrêa, Neurohypophyseal hormone secretion during septic shock, in New trends in brain research, ed. by F.J. Chen (Nova Science Publishers, New York, 2006), pp. 75–94

    Google Scholar 

  9. D.W. Landry, H.R. Levin, E.M. Gallant, R.C. Ashton Jr, S. Seo, D. D’Alessandro, M.C. Oz, J.A. Oliver, Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95, 1122–1125 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. G.R. Oliveira-Pelegrin, M.I. Ravanelli, L.G. Branco, M.J. Rocha, Thermoregulation and vasopressin secretion during polymicrobial sepsis. NeuroImmunomodulation 16, 45–53 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. T. Sharshar, A. Blanchard, M. Paillard, J.C. Raphael, P. Gajdos, D. Annane, Circulating vasopressin levels in septic shock. Crit. Care Med. 31, 1752–1758 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. L.A. Athayde, G.R. Oliveira-Pelegrin, A. Nomizo, L.H. Faccioli, M.J. Rocha, Blocking central leukotrienes synthesis affects vasopressin release during sepsis. Neuroscience 160, 829–836 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. P.B. Correa, J.A. Pancoto, G.R. de Oliveira-Pelegrin, E.C. Carnio, M.J. Rocha, Participation of iNOS-derived NO in hypothalamic activation and vasopressin release during polymicrobial sepsis. J. Neuroimmunol. 183, 17–25 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. J.A. Pancoto, P.B. Correa, G.R. Oliveira-Pelegrin, M.J. Rocha, Autonomic dysfunction in experimental sepsis induced by cecal ligation and puncture. Auton. Neurosci. 138, 57–63 (2008)

    Article  PubMed  Google Scholar 

  15. F. Wahab, B. Atika, G.R. Oliveira-Pelegrin, M.J. Rocha, Recent advances in the understanding of sepsis-induced alterations in the neuroendocrine system. Endocr. Metab. Immune Disord. Drug Targets 13, 335–347 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. M.L. Wong, P.B. Bongiorno, V. Rettori, S.M. McCann, J. Licinio, Interleukin (IL) 1beta, IL-1 receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: pathophysiological implications. Proc. Natl. Acad. Sci. U.S.A. 94, 227–232 (1997)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. C.A. Dinarello, Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. G.R. Oliveira-Pelegrin, P.J. Basso, M.J. Rocha, Cellular bioenergetics changes in magnocellular neurons may affect copeptin expression in the late phase of sepsis. J. Neuroimmunol. 267, 28–34 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. T. Sharshar, R. Carlier, A. Blanchard, A. Feydy, F. Gray, M. Paillard, J.C. Raphael, P. Gajdos, D. Annane, Depletion of neurohypophyseal content of vasopressin in septic shock. Crit. Care Med. 30, 497–500 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. A.R. Consiglio, A.B. Lucion, Technique for collecting cerebrospinal fluid in the cisterna magna of non-anesthetized rats. Brain Res. Brain Res. Protoc. 5, 109–114 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. M.J. Rocha, Y. Chen, G.R. Oliveira, M. Morris, Physiological regulation of brain angiotensin receptor mRNA in AT1a deficient mice. Exp. Neurol. 195, 229–235 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. D.S. Bredt, S.H. Snyder, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87, 682–685 (1990)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. G.R. Oliveira-Pelegrin, S.V. de Azevedo, S.T. Yao, D. Murphy, M.J. Rocha, Central NOS inhibition differentially affects vasopressin gene expression in hypothalamic nuclei in septic rats. J. Neuroimmunol. 227, 80–86 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. M.L. Wong, V. Rettori, A. al-Shekhlee, P.B. Bongiorno, G. Canteros, S.M. McCann, P.W. Gold, J. Licinio, Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat. Med. 2, 581–584 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. R. Sonneville, C. Guidoux, L. Barrett, O. Viltart, V. Mattot, A. Polito, S. Siami, G.L. de la Grandmaison, A. Blanchard, M. Singer, D. Annane, F. Gray, J.P. Brouland, T. Sharshar, Vasopressin synthesis by the magnocellular neurons is different in the supraoptic nucleus and in the paraventricular nucleus in human and experimental septic shock. Brain Pathol. 20, 613–622 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. G.R. Oliveira-Pelegrin, F.A. Aguila, P.J. Basso, M.J. Rocha, Role of central NO-cGMP pathway in vasopressin and oxytocin gene expression during sepsis. Peptides 31, 1847–1852 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. M.M. Gabellec, R. Griffais, G. Fillion, F. Haour, Expression of interleukin 1, interleukin 1 and interleukin 1 receptor antagonist mRNA in mouse brain: regulation by bacterial lipopolysaccharide (LPS) treatment. Mol. Brain Res. 31, 122–130 (1995)

    Article  CAS  PubMed  Google Scholar 

  28. B. Beltrán, A. Mathur, M.R. Duchen, J.D. Erusalimsky, S. Moncada, The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. U.S.A. 97, 14602–14607 (2000)

    Article  PubMed Central  PubMed  Google Scholar 

  29. M.L. Wong, V. Rettori, A. al-Shekhlee, P.B. Bongiorno, G. Canteros, S.M. McCann, P.W. Gold, J. Licinio, Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat. Med. 2, 581–584 (1996)

    Article  CAS  PubMed  Google Scholar 

  30. S. Rivest, S. Lacroix, L. Vallières, S. Nadeau, J. Zhang, N. Laflamme, How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc. Soc. Exp. Biol. Med. 223, 22–38 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. L.C. Ehrlich, K.P. Phillip, H. Shuxian, Interleukin (IL)-1 [beta]-mediated apoptosis of human astrocytes. Neuroreport 10(9), 1849–1852 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. C. Binder, M. Schulz, W. Hiddemann, M. Oellerich, Caspase-activation and induction of inducible nitric oxide-synthase during TNF alpha-triggered apoptosis. Anticancer Res. 19, 1715–1720 (1998)

    Google Scholar 

  33. J. Bustamante, G. Bersier, M. Romero, R.A. Badin, A. Boveris, Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis. Arch. Biochem. Biophys. 376, 239–247 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. G.C. Brown, C.E. Cooper, Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356, 295–298 (1994)

    Article  CAS  PubMed  Google Scholar 

  35. J.D. Erusalimsky, S. Moncada, Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler. Thromb. Vasc. Biol. 27, 2524–2531 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. F.X. Guix, I. Uribesalgo, M. Coma, F.J. Munoz, The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol. 76, 126–152 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. P. Ghafourifar, E. Cadenas, Mitochondrial nitric oxide synthase. Trends Pharmacol. Sci. 26, 190–195 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. F.R. Sharp, M. Bernaudin, HIF1 and oxygen sensing in the brain. Nat. Rev. Neurosci. 5, 437–448 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. R.K. Bruick, Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. U.S.A. 97, 9082–9087 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. G.R. Oliveira-Pelegrin, R.S. Saia, E.C. Cárnio, M.J. Rocha, Oxytocin affects nitric oxide and cytokine production by sepsis-sensitized macrophages. NeuroImmunoModulation 20, 65–71 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Nadir Martins Fernandes and Milene Mantovani for the technical assistant. Fernando Queiróz Cunha and José Antunes Rodrigues provided the infrastructure for the NOS activity analysis. Financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) is gratefully acknowledged.

Disclosures

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José A. Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, F., Tazinafo, L.F., Cárnio, E.C. et al. Interleukin-1 receptor antagonist decreases cerebrospinal fluid nitric oxide levels and increases vasopressin secretion in the late phase of sepsis in rats. Endocrine 49, 215–221 (2015). https://doi.org/10.1007/s12020-014-0452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0452-2

Keywords

Navigation