Abstract
The objectives of the study were to improve the model system of diabetic nephropathy in nonhuman primates and assess the early renal damage. Diabetes was induced in monkeys by streptozotocin, and the animals were administered exogenous insulin to control blood glucose (BG). Animals were divided into four groups, including the normal group (N = 3), group A (streptozotocin diabetic model with control of BG < 10 mmol/L, N = 3), group B (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L, N = 4), and group C (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L and high-sodium and high-fat diet, N = 4). The following parameters were evaluated: (1) blood biochemistry and routine urinalysis, (2) color Doppler ultrasound, (3) angiography, (4) renal biopsy, and (5) renal fibrosis-related gene expression levels. Animals in group C developed progressive histologic changes with typical diabetic nephropathy resembling diabetic nephropathy in human patients and exhibited accelerated development of diabetic nephropathy compared with other nonhuman primate models. Significant changes in the expression of the Smad2/3 gene and eNOS in renal tissue were also observed in the early stage of diabetic nephropathy. In conclusion, our model is an excellent model of diabetic nephropathy for understanding the pathogenesis of diabetic nephropathy.






Similar content being viewed by others
References
S. Dronavalli, I. Duka, G.L. Bakris, The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4(8), 444–452 (2008)
C.F. Howard Jr, Nonhuman primates as models for the study of human diabetes mellitus. Diabetes 31(Suppl 1 Pt 2), 37–42 (1982)
S.E. Thomson, S.V. McLennan, P.D. Kirwan, S.J. Heffernan, A. Hennessy, D.K. Yue, S.M. Twigg, Renal connective tissue growth factor correlates with glomerular basement membrane thickness and prospective albuminuria in a non-human primate model of diabetes: possible predictive marker for incipient diabetic nephropathy. J. Diabetes Complic. 22(4), 284–294 (2008)
M.C. Thomas, J. Moran, C. Forsblom, V. Harjutsalo, L. Thorn, A. Ahola, J. Wadén, N. Tolonen, M. Saraheimo, D. Gordin, P.H. Groop, FinnDiane Study Group, The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34(4), 861–866 (2011)
J.M. Luther, Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23(1), 10–12 (2012)
A.D. Dobrian, S.D. Schriver, T. Lynch, R.L. Prewitt, Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am. J. Physiol. Renal. Physiol. 285(4), F619–F628 (2003). Epub 2003 Jun 10
K. Alexandraki, C. Piperi, C. Kalofoutis, J. Singh, A. Alaveras, A. Kalofoutis, Inflammatory process in type 2 diabetes: The role of cytokines. Ann. N. Y. Acad. Sci. 1084, 89–117 (2006)
K. Kalantarinia, A.S. Awad, H.M. Siragy, Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidiabetic Nephrop. Int. 64(4), 1208–1213 (2003)
A. Nakamura, K. Shikata, M. Hiramatsu, T. Nakatou, T. Kitamura, J. Wada, T. Itoshima, H. Makino, Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 28(12), 2890–2895 (2005)
G.H. Tesch, MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 294(4), F697–F701 (2008)
A.C. Chung, H.Y. Lan, Chemokines in renal injury. J. Am. Soc. Nephrol. 22(5), 802–809 (2011)
T. Nakagawa, W. Sato, O. Glushakova, M. Heinig, T. Clarke, M. Campbell-Thompson, Y. Yuzawa, M.A. Atkinson, R.J. Johnson, B. Croker, Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18(2), 539–550 (2007). Epub 2007 Jan 3
M. Tong, Y. Wang, Y. Wang, H. Chen, C. Wang, L. Yang, J. Axelsson, B. Lindholm, Genistein attenuates advanced glycation end product-induced expression of fibronectin and connective tissue growth factor. Am. J. Nephrol. 36(1), 34–40 (2012)
I.S. Park, H. Kiyomoto, S.L. Abboud, H.E. Abboud, Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes 46(3), 473–480 (1997)
M. Sato, Y. Muragaki, S. Saika, A.B. Roberts, A. Ooshima, Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112(10), 1486–1494 (2003)
X. Jin, L. Zeng, S. He, Y. Chen, B. Tian, G. Mai, G. Yang, L. Wei, Y. Zhang, H. Li, L. Wang, C. Qiao, J. Cheng, Y. Lu, Comparison of single high-dose streptozotocin with partial pancreatectomy combined with low-dose streptozotocin for diabetes induction in rhesus monkeys. Exp. Biol. Med. (Maywood). 235(7), 877–885 (2010)
H. Sugimoto, V.S. LeBleu, D. Bosukonda, P. Keck, G. Taduri, W. Bechtel, H. Okada, W. Carlson Jr, P. Bey, M. Rusckowski, B. Tampe, D. Tampe, K. Kanasaki, M. Zeisberg, R. Kalluri, Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat. Med. 18(3), 396–404 (2012)
Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, M. Shichiri, Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28(2), 103–117 (1995)
P.H. Wang, J. Lau, T.C. Chalmers, Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes. Lancet 341(8856), 1306–1309 (1993)
Writing Team for the Diabetes Control and Complications Trial/Epidemiology of diabetes Interventions and Complications Research Group, Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287(19), 2563–2569 (2002)
I. Ranjit Unnikrishnan, R.M. Anjana, V. Mohan, Importance of controlling diabetes early–the concept of metabolic memory, legacy effect and the case for early insulinisation. J. Assoc. Physicians India 59, 8–12 (2011)
T.W. Tervaert, A.L. Mooyaart, K. Amann, A.H. Cohen, H.T. Cook, C.B. Drachenberg, F. Ferrario, A.B. Fogo, M. Haas, E. de Heer, K. Joh, L.H. Noël, J. Radhakrishnan, S.V. Seshan, I.M. Bajema, J.A. Bruijn, Renal Pathology Society, Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21(4), 556–563 (2010)
P.P. Rood, R. Bottino, A.N. Balamurugan, C. Smetanka, M. Ezzelarab, J. Busch, H. Hara, M. Trucco, D.K. Cooper, Induction of diabetes in cynomolgus monkeys with high-dose streptozotocin: adverse effects and early responses. Pancreas 33(3), 287–292 (2006)
L.M. Russo, R.M. Sandoval, S.B. Campos, B.A. Molitoris, W.D. Comper, D. Brown, Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J. Am. Soc. Nephrol. 20(3), 489–494 (2009)
S. He, Y. Chen, L. Wei, X. Jin, L. Zeng, Y. Ren, J. Zhang, L. Wang, H. Li, Y. Lu, J. Cheng, Treatment and risk factor analysis of hypoglycemia in diabetic rhesus monkeys. Exp. Biol. Med. (Maywood). 236(2), 212–218 (2011)
S. Ferber, A. Halkin, H. Cohen, I. Ber, Y. Einav, I. Goldberg, I. Barshack, R. Seijffers, J. Kopolovic, N. Kaiser, A. Karasik, Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6(5), 568–572 (2000)
B. Soria, E. Roche, G. Berná, T. León-Quinto, J.A. Reig, F. Martín, Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2), 157–162 (2000)
J. Menne, N. Shushakova, J. Bartels, Y. Kiyan, R. Laudeley, H. Haller, J.K. Park, M. Meier, Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy. Diabetes 62(4), 1167–1174 (2013)
N.F. Banki, A. Ver, L.J. Wagner, A. Vannay, P. Degrell, A. Prokai, R. Gellai, L. Lenart, D.N. Szakal, E. Kenesei, K. Rosta, G. Reusz, A.J. Szabo, T. Tulassay, C. Baylis, A. Fekete, Aldosterone antagonists in monotherapy are protective against streptozotocin-induced diabetic nephropathy in rats. PLoS ONE 7(6), e39938 (2012)
H.Y. Lan, Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int. J. Biol. Sci. 7(7), 1056–1067 (2011)
P. Boor, K. Sebeková, T. Ostendorf, J. Floege, Treatment targets in renal fibrosis. Nephrol. Dial. Transplant. 22(12), 3391–3407 (2007). Epub 2007 Sep 21
D.M. Maahs, G.L. Kinney, P. Wadwa, J.K. Snell-Bergeon, D. Dabelea, J. Hokanson, J. Ehrlich, S. Garg, R.H. Eckel, M.J. Rewers, Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care 28(2), 301–306 (2005)
Michael Shlipak, Associate Professor of Medicine. Diabetic nephropathy. Clin Evid (Online). 2009; 2009: 0606
S. Andersen, L. Tarnow, P. Rossing, B.V. Hansen, H.H. Parving, Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. Kidney Int. 57(2), 601–606 (2000)
Acknowledgments
This study was supported by the Program of Natural Science Foundation of China (No. 81370824) and National Program for High Technology Research and Development of China (No. 2012AA020702).
Conflict of interest
None.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
12020_2014_211_MOESM2_ESM.doc
Supplementary Figure 1. Renal ultrasound blood flow distribution and spectrum in control and experimental groups(DOC 769 kb)
12020_2014_211_MOESM3_ESM.doc
Supplementary Figure 2. Retinal capillaries was normal in fundus examination. Left and right eyes of monkey from group C (DOC 766 kb)
12020_2014_211_MOESM4_ESM.doc
Supplementary Figure 3. Representative mages of H&E stained kidneys from control and 3 experimental groups before we imposed any interventions. Scale bar 100 μm (DOC 1815 kb)
Rights and permissions
About this article
Cite this article
Wang, D., Liu, J., He, S. et al. Assessment of early renal damage in diabetic rhesus monkeys. Endocrine 47, 783–792 (2014). https://doi.org/10.1007/s12020-014-0211-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12020-014-0211-4