Skip to main content

Advertisement

Log in

Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Increased cyclooxygenase-2 (COX-2) expression is associated with pancreatic β-cell dysfunction. We previously demonstrated that the transcription factor Ets-1 significantly up-regulated COX-2 gene promoter activity. In this report, we used the pancreatic β-cell line INS-1 and isolated rat islets to investigate whether Ets-1 could induce β-cell dysfunction through up-regulating COX-2 gene expression. We investigated the effects of ETS-1 overexpression and the effects of ETS-1 RNA interference on endogenous COX-2 expression in INS-1 cells. We used site-directed mutagenesis and a dual luciferase reporter assay to study putative Ets-1 binding sites in the COX-2 promoter. The effect of ETS-1 1 overexpression on the insulin secretion function of INS-1 cells and rat islets and the potential reversal of these effects by a COX-2 inhibitor were determined in a glucose-stimulated insulin secretion (GSIS) assay. ETS-1 overexpression significantly induces endogenous COX-2 expression, but ETS-1 RNA interference has no effect on basal COX-2 expression in INS-1 cells. Ets-1 protein significantly increases COX-2 promoter activity through the binding site located in the −195/−186 region of the COX-2 promoter. ETS-1 overexpression significantly inhibited the GSIS function of INS-1 cells and islet cells and COX-2 inhibitor treatment partly reversed this effect. These findings indicated that ETS-1 overexpression induces β-cell dysfunction partly through up-regulation of COX-2 gene expression. Moreover, Ets-1, the transcriptional regulator of COX-2 expression, may be a potential target for the prevention of β-cell dysfunction mediated by COX-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.A. Rouzer, L.J. Marnett, Cyclooxygenases: structural and functional insights. J. Lipid Res. 50, S29–S34 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  2. P. Hegde, M.S. Maddur, A. Friboulet, J. Bayry, S.V. Kaveri, Viscum album exerts anti-inflammatory effect by selectively inhibiting cytokine-induced expression of cyclooxygenase-2. PLoS ONE 6, e26312 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. O.O. Ogunwobi, T. Wang, L. Zhang, C. Liu, COX-2 and Akt mediate multiple growth factor-induced epithelial-mesenchymal transition in human hepatocellular carcinoma. J. Gastroenterol. Hepatol. 27, 566–578 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. M.A. Panaro, M. Pricci, F. Meziani, T. Ragot, R. Andriantsitohaina, V. Mitolo, A. Tesse, Cyclooxygenase-2-derived prostacyclin protective role on endotoxin-induced mouse cardiomyocyte mortality. Cardiovasc. Toxicol. 11, 347–356 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. E. Tahanian, L.A. Sanchez, T.C. Shiao, R. Roy, B. Annabi, Flavonoids targeting of IκB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells. Drug Des. Dev. Ther. 5, 299–309 (2011)

    CAS  Google Scholar 

  6. L.S. Simon, Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med. 106, 37S–42S (1999)

    Article  CAS  PubMed  Google Scholar 

  7. M. Tsujii, S. Kawano, R.N. DuBois, Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. U.S.A. 94, 3336–3340 (1997)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. O.C. Trifan, T. Hla, Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J. Cell. Mol. Med. 7, 207–222 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. M.L. Sheu, F.M. Ho, R.S. Yang, K.F. Chao, W.W. Lin, S.Y. Lin-Shiau, S.H. Liu, High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase–regulated cyclooxygenase-2 pathway. Arterioscler. Thromb. Vasc. Biol. 25, 539–545 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. T. Kuwano, S. Nakao, H. Yamamoto, M. Tsuneyoshi, T. Yamamoto, M. Kuwano, M. Ono, Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 18, 300–310 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. R.P. Robertson, Dominance of cyclooxygenase-2 in the regulation of pancreatic islet prostaglandin synthesis. Diabetes 47, 1379–1383 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. P.O. Tran, C.E. Gleason, V. Poitout, R.P. Robertson, Prostaglandin E (2) mediates inhibition of insulin secretion by interleukin-1beta. J. Biol. Chem. 274, 31245–31248 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. P.O. Tran, C.E. Gleason, R.P. Robertson, Inhibition of interleukin-1β-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet β-cell function. Diabetes 51, 1772–1778 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. R. Tazawa, X.M. Xu, K.K. Wu, L.H. Wang, Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem. Biophys. Res. Commun. 203, 190–199 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. K. Kirtikara, R. Raghow, S.J. Laulederkind, S. Goorha, T. Kanekura, L.R. Ballou, Transcriptional regulation of cyclooxygenase-2 in the human microvascular endothelial cell line, HMEC-1: control by the combinatorial actions of AP2, NF-IL-6 and CRE elements. Mol. Cell. Biochem. 203, 41–51 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. L.J. Crofford, B. Tan, C.J. McCarthy, T. Hla, Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum. 40, 226–236 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. J.R. Mestre, D.E. Rivadeneira, P.J. Mackrell, M. Duff, P.P. Stapleton, V. Mack-Strong, S. Maddali, G.P. Smyth, T. Tanabe, J.M. Daly, Overlapping CRE and E-box promoter elements can independently regulate COX-2 gene transcription in macrophages. FEBS Lett. 496, 147–151 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. H.W. Koon, D. Zhao, Y. Zhan, S.H. Rhee, M.P. Moyer, C. Pothoulakis, Substance P stimulates cyclooxygenase-2 and prostaglandin E2 expression through JAK-STAT activation in human colonic epithelial cells. J. Immunol. 176, 5050–5059 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. K. Schroer, Y. Zhu, M.A. Saunders, W.G. Deng, X.M. Xu, J. Meyer-Kirchrath, K.K. Wu, Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation 105, 2760–2765 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. M.A. Saunders, L. Sansores-Garcia, D.W. Gilroy, K.K. Wu, Selective suppression of CCAAT/enhancer-binding protein beta binding and cyclooxygenase-2 promoter activity by sodium salicylate in quiescent human fibroblasts. J. Biol. Chem. 276, 18897–18904 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhu, M.A. Saunders, H. Yeh, W.G. Deng, K.K. Wu, Dynamic regulation of cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer-binding proteins. J. Biol. Chem. 277, 6923–6928 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. X. Zhang, J. Zhang, X. Yang, X. Han, Several transcription factors regulate COX-2 gene expression in pancreatic beta-cells. Mol. Biol. Rep. 34, 199–206 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. B. Wasylyk, S.L. Hahn, A. Giovane, The Ets family of transcription factors. Eur. J. Biochem. 211, 7–18 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. V.I. Sementchenko, D.K. Watson, Ets target genes: past, present, and future. Oncogene 19(55), 6533–6548 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. D.K. Watson, A. Seth, Ets gene family, in Oncogene Reviews, ed. by J. Jenkins, E.P. Reddy (Nature Publishing Group, London, 2000), pp. 6393–6548

    Google Scholar 

  26. D.K. Watson, R. Li, V.I. Sementchenko, G. Mavrothalassitis, A. Seth, The ETS genes, in Encyclopedia of Cancer, ed. by J.R. Bertino (Academic Press, San Diego, 2001), pp. 189–196

    Google Scholar 

  27. J. Dittmer, The biology of the Ets1 proto-oncogene. Mol. Cancer 2, 29 (2003)

    Article  PubMed Central  PubMed  Google Scholar 

  28. T. Oikawa, T. Yamada, Molecular biology of the Ets family of transcription factors. Gene 303, 11–34 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. J.S. Yordy, R.C. Muise-Helmericks, Signal transduction and the Ets family of transcriptio factors. Oncogene 19, 6503–6513 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. S. Sung, Y. Park, J.R. Jo, N.K. Jung, D.K. Song, J. Bae, D.Y. Keum, J.B. Kim, G.Y. Park, B.C. Jang, J.W. Park, Overexpression of cyclooxygenase-2 in NCI-H292 human alveolar epithelial carcinoma cells: roles of p38 MAPK, ERK-1/2, and PI3K/PKB signaling proteins. J. Cell. Biochem. 112, 3015–3024 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. K. Bansal, S. Holla, S. Verma-Kumar, P. Sharma, K.N. Balaji, ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling. Mol. Immunol. 49, 655–663 (2012)

    Article  PubMed  Google Scholar 

  32. X.F. Zhang, W. Yong, J.H. Lv, Y.X. Zhu, J.J. Zhang, F. Chen, R.H. Zhang, T. Yang, Y.J. Sun, X. Han, Inhibition of forkhead box O1 protects pancreatic β-cells against dexamethasone-induced dysfunction. Endocrinology 150, 4065–4073 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. T. Tabatabaie, A.M. Waldon, J.M. Jacob, R.A. Floyd, Y. Kotake, COX-2 inhibition prevents insulin-dependent diabetes in low-dose streptozotocin-treated mice. Biochem. Biophys. Res. Commun. 273, 699–704 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. S.J. Persaud, C.J. Burns, V.D. Belin, P.M. Jones, Glucose-induced regulation of COX-2 expression in human islets of Langerhans. Diabetes 53, S190–S192 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. T. Tanabe, N. Tohnai, Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat. 68–69, 95–114 (2002)

    Article  PubMed  Google Scholar 

  37. S.J. Yeo, D. Gravis, J.G. Yoon, A.K. Yi, Myeloid differentiation factor 88-dependent transcriptional regulation of cyclooxygenase-2 expression by CpG DNA: role of NF-kappaB and p38. J. Biol. Chem. 278, 22563–22573 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (81001079, 81101802), the Natural Science Foundation of Zhejiang Province (Y2110310), the Natural Science Foundation of Jiangsu Province (BK2011845), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, JX10231801).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Jing Zhang.

Additional information

Xiong-Fei Zhang and Yi Zhu have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XF., Zhu, Y., Liang, WB. et al. Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression. Endocrine 46, 470–476 (2014). https://doi.org/10.1007/s12020-013-0114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0114-9

Keywords

Navigation