Skip to main content

Advertisement

Log in

Methylglyoxal, obesity, and diabetes

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG) is a highly reactive compound derived mainly from glucose and fructose metabolism. This metabolite has been implicated in diabetic complications as it is a strong AGE precursor. Furthermore, recent studies suggested a role for MG in insulin resistance and beta-cell dysfunction. Although several drugs have been developed in the recent years to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the mechanisms of MG formation, detoxification, and action. Furthermore, we review the current knowledge about its implication on the pathophysiology and complications of obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Neuberg, Biochem. Z. 51, 484–508 (1913)

    Google Scholar 

  2. H. Dakin, H. Dudley, An enzyme concerned with the formation of hydroxy acids from ketonic aldehydes. J. Biol. Chem. 14, 423–431 (1913)

    CAS  Google Scholar 

  3. E. Case, R. Cook, The occurrence of pyruvic acid and methylglyoxal in muscle metabolism. Biochem. J. 25(4), 1319–1335 (1931)

    PubMed  CAS  Google Scholar 

  4. F. Clift, R.P. Cook, A method of determination of some biologically important aldehydes and ketones, with special reference to pyruvic acid and methylglyoxal. Biochem. J. 26(6), 1788–1799 (1932)

    PubMed  CAS  Google Scholar 

  5. A. McLellan, P.J. Thornalley, Glyoxalase activity in human red blood cells fractioned by age. Mech. Ageing Dev. 48(1), 63–71 (1989)

    Article  PubMed  CAS  Google Scholar 

  6. P.J. Thornalley, Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem. J. 254(3), 751–755 (1988)

    PubMed  CAS  Google Scholar 

  7. T. Atkins, P. Thornally, Erythrocyte glyoxalase activity in genetically obese (ob/ob) and streptozotocin diabetic mice. Diabetes Res. 11(3), 125–129 (1989)

    PubMed  CAS  Google Scholar 

  8. P.J. Thornalley, N. Hooper, P. Jennings, C. Florkowski, A. Jones, J. Lunec, A. Barnett, The human red blood cell glyoxalase system in diabetes mellitus. Diabetes Res. Clin. Pract. 7(2), 115–120 (1989)

    Article  PubMed  CAS  Google Scholar 

  9. P.J. Thornalley, The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 269(1), 1–11 (1990)

    PubMed  CAS  Google Scholar 

  10. A. McLellan, P.J. Thornalley, J. Benn, P. Sonksen, Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin. Sci. (Lond) 87(1), 21–29 (1994)

    CAS  Google Scholar 

  11. H. Odani, T. Shinzato, Y. Matsumoto, J. Usami, K. Maeda, Increase in three alpha, beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem. Biophys. Res. Commun. 256(1), 89–93 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. M. Brownlee, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6), 1615–1625 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. W. Chan, H. Wu, N. Shao, Apoptotic signaling in methylglyoxal-treated human osteoblasts involves oxidative stress, c-Jun N-terminal kinase, caspase-3 and p21-activated kanse-2. J. Cell. Biochem. 100, 1056–1069 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. K. Nakayama, M. Nakayama, M. Iwabuchi, H. Terawaki, T. Sato, M. Kohno, S. Ito, Plasma alpha-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am. J. Nephrol. 28(6), 871–878 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. D. Tan, Y. Wang, C. Lo, S. Sang, C. Ho, Methylglyoxal: its presence in beverages and potential scavengers. Ann. N. Y. Acad. Sci. 1126, 72–75 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. O. Lee, W. Bruce, Q. Dong, J. Bruce, R. Mehta, P. O’Brien, Fructose and carbonyl metabolites as endogenous toxins. Chem. Biol. Interact. 178(1–3), 332–339 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. J. Liu, R. Wang, K. Desai, L. Wu, Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovasc. Res. 92(3), 494–503 (2011)

    Article  PubMed  CAS  Google Scholar 

  18. P. Yu, M. Wang, H. Fan, Y. Deng, D. Gubisne-Haberle, Involvement of SSAO-mediated deamination in adipose glucose transport and weight gain in obese diabetic KKAy mice. Am. J. Physiol. Endocrinol. Metab. 286(4), E634–E641 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. M. Barrand, B. Callingham, Solubilization and some properties of a semicarbazide-sensitive amine oxidase in brown adipose tissue of the rat. Biochem. J. 222, 467–475 (1984)

    PubMed  CAS  Google Scholar 

  20. Y. Deng, P. Yu, Assessment of the deamination of aminoacetone, an endogenous substrate for semicarbazide-sensitive amine oxidase. Anal. Biochem. 270, 97–102 (1999)

    Article  PubMed  CAS  Google Scholar 

  21. Z. Turk, M. Cavlović-Naglić, N. Turk, Relationship of methylglyoxal-adduct biogenesis to LDL and triglyceride levels in diabetics. Life Sci. 89(13–14), 485–490 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. N. Ahmed, B. Mirshekar-Syahkal, L. Kennish, N. Karachalias, R. Babaei-Jadidi, P.J. Thornalley, Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol. Nutr. Food Res. 49(7), 691–699 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. A. Negre-Salvayre, R. Salvayre, N. Augé, R. Pamplona, M. Portero-Otín, Hyperglycemia and glycation in diabetic complications. Antioxid. Redox Signal. 11(12), 3071–3109 (2009)

    Article  PubMed  CAS  Google Scholar 

  24. A. Stirban, M. Negrean, C. Götting, B. Stratmann, T. Gawlowski, M. Mueller-Roesel, K. Kleesiek, T. Koschinsky, D. Tschoepe, Leptin decreases postprandially in people with type 2 diabetes, an effect reduced by the cooking method. Horm. Metab. Res. 40(12), 896–900 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. E. Marceau, V.A. Yaylayan, Profiling of alpha-dicarbonyl content of commercial honeys from different botanical origins: identification of 3,4-dideoxyglucoson-3-ene (3,4-DGE) and related compounds. Agric. Food Chem. 57(22), 10837–10844 (2009)

    Article  CAS  Google Scholar 

  26. R. Zhao, A. Lee, J.P. Abbatt, Investigation of aqueous-phase photooxidation of glyoxal and methylglyoxal by aerosol chemical ionization mass spectrometry: observation of hydroxyhydroperoxide formation. J. Phys. Chem. A. 116(24), 6253–6263 (2012)

    Article  PubMed  CAS  Google Scholar 

  27. S. Gensberger, S. Mittelmaier, M. Glomb, M. Pischetsrieder, Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup. Anal. Bioanal. Chem. 403(10), 2923–2931 (2012)

    Article  PubMed  CAS  Google Scholar 

  28. R. Spanneberg, G. Salzwedel, M. Glomb, Formation of early and advanced Maillard reaction products correlates to the ripening of cheese. J. Agric. Food Chem. 60(2), 600–607 (2012)

    Article  PubMed  CAS  Google Scholar 

  29. J. Wang, T. Chang, Methylglyoxal content in drinking coffee as a cytotoxic factor. J. Food Sci. 75(6), H167–H171 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. A. Goldin, J. Beckman, A. Schmidt, M. Creager, Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114, 597–605 (2006)

    Article  PubMed  CAS  Google Scholar 

  31. M. Xue, N. Rabbani, P. Thornalley, Glyoxalase in ageing. Semin. Cell Dev. Biol. 22(3), 293–301 (2011)

    Article  PubMed  CAS  Google Scholar 

  32. P. Thornalley, N. Rabbani, Glyoxalase in tumourigenesis and multidrug resistance. Semin. Cell Dev. Biol. 22(3), 318–325 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. S. Hoon, M. Gebbia, M. Costanzo, R. Davis, G. Giaever, C. Nislow, A global perspective of the genetic basis for carbonyl stress resistance. G3 (Bethesda) 1(3), 219–231 (2011)

    Article  CAS  Google Scholar 

  34. M. Lin, H. Chen, T. Liao, T. Huang, C. Chen, J. Lee, Determination of time-dependent accumulation of d-lactate in the streptozotocin-induced diabetic rat kidney by column-switching HPLC with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(29), 3214–3219 (2011)

    Article  PubMed  CAS  Google Scholar 

  35. Y. Kondoh, M. Kawase, M. Hirata, S. Ohmori, Carbon sources for d-lactate formation in rat liver. J. Biochem. 115(3), 590–595 (1994)

    PubMed  CAS  Google Scholar 

  36. T. Fujisawa, S. Akagi, M. Kawase, M. Yamamoto, S. Ohmori, d-lactate metabolism in starved Octopus ocellatus. J. Exp. Zool. A Comp. Exp. Biol. 303(6), 489–496 (2005)

    PubMed  Google Scholar 

  37. N. Rabbani, P.J. Thornalley, Glyoxalase in diabetes, obesity and related disorders. Semin. Cell Dev. Biol. 22(3), 309–317 (2011)

    Article  PubMed  CAS  Google Scholar 

  38. S. Falone, A. D’Alessandro, A. Mirabilio, G. Petruccelli, M. Cacchio, C. Di Ilio, S. Di Loreto, F. Amicarelli, Long term running biphasically improves methylglyoxal-related metabolism, redox homeostasis and neurotrophic support within adult mouse brain cortex. PLoS One 7(2), e31401 (2012)

    Article  PubMed  CAS  Google Scholar 

  39. K. Kim, Y. Kim, D. Jung, J. Lee, J. Kim, Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp. Cell Res. 318(2), 152–159 (2012)

    Article  PubMed  CAS  Google Scholar 

  40. A. Berner, O. Brouwers, R. Pringle, I. Klaassen, L. Colhoun, C. McVicar, S. Brockbank, J. Curry, T. Miyata, M. Brownlee, R. Schlingemann, C. Schalkwijk, A.W. Stitt, Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia 55(3), 845–854 (2012)

    Article  PubMed  CAS  Google Scholar 

  41. R. Inagi, T. Kumagai, T. Fujita, M. Nangaku, The role of glyoxalase system in renal hypoxia. Adv. Exp. Med. Biol. 662, 49–55 (2010)

    Article  PubMed  CAS  Google Scholar 

  42. M. Jack, J. Ryals, D. Wright, Protection from diabetes-induced peripheral sensory neuropathy—a role for elevated glyoxalase I? Exp. Neurol. 234(1), 62–69 (2012)

    Article  PubMed  CAS  Google Scholar 

  43. T. Fleming, J. Cuny, G. Nawroth, Z. Djuric, P. Humpert, M. Zeier, A. Bierhaus, P. Nawroth, Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates? Diabetologia 55(4), 1151–1155 (2012)

    Article  PubMed  CAS  Google Scholar 

  44. A. Ceriello, M. Ihnat, J. Thorpe, The “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J. Clin. Endocrinol. Metab. 94(2), 410–415 (2009)

    Article  PubMed  CAS  Google Scholar 

  45. H. Odani, J. Asami, A. Ishii, K. Oide, T. Sudo, A. Nakamura, N. Miyata, N. Otsuka, K. Maeda, J. Nakagawa, Suppression of renal alpha-dicarbonyl compounds generated following ureteral obstruction by kidney specific alpha-dicarbonyl/l-xylulose reductase. Ann. N. Y. Acad. Sci. 1126, 320–324 (2008)

    Article  PubMed  CAS  Google Scholar 

  46. N. Rabbani, P.J. Thornalley, Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42(4), 1133–1142 (2012)

    Article  PubMed  CAS  Google Scholar 

  47. D. Li, M. Ferrari, E. Ellis, Human aldo-keto reductase AKR7A2 protects against the cytotoxicity and mutagenicity of reactive aldehydes and lowers intracellular reactive oxygen species in hamster V79-4 cells. Chem. Biol. Interact. 195(1), 25–34 (2012)

    Article  PubMed  CAS  Google Scholar 

  48. S. Baba, O. Barski, Y. Ahmed, T. O’Toole, D.J. Conklin, A. Bhatnagar, S. Srivastava, Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes 58(11), 2486–2497 (2009)

    Article  PubMed  CAS  Google Scholar 

  49. R. Narawongsanont, S. Kabinpong, B. Auiyawong, C. Tantitadapitak, Cloning and characterization of AKR4C14, a rice aldoketo reductase from Thai Jasmine rice. Protein J. 31(1), 35–42 (2012)

    Article  PubMed  CAS  Google Scholar 

  50. S. Baba, J. Hellmann, S. Srivastava, A. Bhatnagar, Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE). Chem. Biol. Interact. 191(1–3), 357–363 (2011)

    Article  PubMed  CAS  Google Scholar 

  51. M. Laga, A. Cottyn, F. van Herreweghe, W. Vanden Berghe, G. Haegeman, P. Van Oostveldt, J. Vandekerckhove, K. Vancompernolle, Methylglyoxal suppresses TNF-α-induced NF-κB activation by inhibiting NF-κB DNA-binding. Biochem. Pharmacol. 74(4), 579–589 (2007)

    Article  PubMed  CAS  Google Scholar 

  52. S. Grimm, M. Horlacher, B. Catalgol, A. Hoehn, T. Reinheckel, T. Grune, Cathepsins D and L reduce the toxicity of advanced glycation end products. Free Radic. Biol. Med. 52(6), 1011–1023 (2012)

    Article  PubMed  CAS  Google Scholar 

  53. C. Bento, F. Marques, R. Fernandes, P. Pereira, Methylglyoxal alters the function and stability of critical components of the protein quality control. PLoS One 5(9), e13007 (2010)

    Article  PubMed  CAS  Google Scholar 

  54. K. Nakajou, S. Horiuchi, M. Sakai, N. Haraguchi, M. Tanaka, M. Takeya, M. Otagiri, Renal clearance of glycolaldehyde- and methylglyoxal-modified proteins in mice is mediated by mesangial cells through a class A scavenger receptor (SR-A). Diabetologia 48(2), 317–327 (2005)

    Article  PubMed  CAS  Google Scholar 

  55. S. Chetyrkin, W. Zhang, B. Hudson, A. Serianni, P. Voziyan, Pyridoxamine protects proteins from functional damage by 3-deoxyglucosone: mechanism of action of pyridoxamine. Biochemistry 47(3), 997–1006 (2008)

    Article  PubMed  CAS  Google Scholar 

  56. J. Kim, O. Kim, C. Kim, E. Sohn, K. Jo, J. Kim, Accumulation of argpyrimidine, a methylglyoxal-derived advanced glycation end product, increases apoptosis of lens epithelial cells both in vitro and in vivo. Exp. Mol. Med. 44(2), 167–175 (2012)

    Article  PubMed  CAS  Google Scholar 

  57. X. Fan, L. Xiaoqin, B. Potts, C. Strauch, I. Nemet, V. Monnier, Topical application of l-arginine blocks advanced glycation by ascorbic acid in the lens of hSVCT2 transgenic mice. Mol. Vis. 17, 2221–2227 (2011)

    PubMed  CAS  Google Scholar 

  58. L. Lv, X. Shao, H. Chen, C. Ho, S. Sang, Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 24(4), 579–586 (2011)

    Article  PubMed  CAS  Google Scholar 

  59. A. Dhar, K. Desai, L. Wu, Alagebrium attenuates acute methylglyoxal-induced glucose intolerance in Sprague-Dawley rats. Br. J. Pharmacol. 159(1), 166–175 (2010)

    Article  PubMed  CAS  Google Scholar 

  60. H. Liu, H. Liu, W. Wang, C. Khoo, J. Taylor, L. Gu, Cranberry phytochemicals inhibit glycation of human hemoglobin and serum albumin by scavenging reactive carbonyls. Food Funct. 2(8), 475–482 (2011)

    Article  PubMed  CAS  Google Scholar 

  61. H. Liu, L. Gu, Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. J. Agric. Food Chem. 60(5), 1326–1334 (2012)

    Article  PubMed  CAS  Google Scholar 

  62. M. Lu, R. Wang, X. Song, R. Chibbar, X. Wang, L. Wu, Q. Meng, Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr. Res. 28(7), 464–471 (2008)

    Article  PubMed  CAS  Google Scholar 

  63. P. Maher, R. Dargusch, J. Ehren, S. Okada, K. Sharma, D. Schubert, Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 6(6), e21226 (2011)

    Article  PubMed  CAS  Google Scholar 

  64. Z. Wang, C. Hsu, C. Huang, M. Yin, Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur. J. Pharmacol. 628(1–3), 255–260 (2010)

    Article  PubMed  CAS  Google Scholar 

  65. P. Muthenna, C. Akileshwari, G. Reddy, Ellagic acid, a new antiglycating agent: its inhibition of Nϵ-(carboxymethyl)lysine. Biochem. J. 442(1), 221–230 (2012)

    Article  PubMed  CAS  Google Scholar 

  66. S. Taneda, K. Honda, K. Tomidokoro, K. Uto, K. Nitta, H. Oda, Eicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis. Am. J. Physiol. Renal Physiol. 299(6), F1451–F1461 (2010)

    Article  PubMed  CAS  Google Scholar 

  67. X. Jia, D.J. Olson, A.R. Ross, L. Wu, Structural and functional changes in human insulin induced by methylglyoxal. FASEB J. 20, 1555–1557 (2006)

    Article  PubMed  CAS  Google Scholar 

  68. Y. Gao, Y. Wang, Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal. Biochemistry 45, 15654–15660 (2006)

    Article  PubMed  CAS  Google Scholar 

  69. A. Cantero, M. Portero-Otin, V. Ayala, N. Auge, M. Sanson, M. Elbaz, J. Thiers, R. Pamplona, R. Salvayre, A. Negre-Salvayre, Methylglyoxal induces advanced glycation end product (AGEs) formation and dysfunction of PDGF receptor-beta: implications for diabetic atherosclerosis. FASEB J. 21, 3096–3106 (2007)

    Article  PubMed  CAS  Google Scholar 

  70. A. Biswas, B. Wang, M. Miyagi, R.H. Nagaraj, Effect of methylglyoxal modification on stress-induced aggregation of client proteins and their chaperoning by human alphaA crystallin. Biochem. J. 409, 771–777 (2008)

    Article  PubMed  CAS  Google Scholar 

  71. M.U. Ahmed, F. Brinkmann, T.P. Degenhardt, S. Thorpe, J. Baynes, N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 324, 565–570 (1997)

    PubMed  CAS  Google Scholar 

  72. N. Rabbani, P. Thornalley, The dicarbonyl proteome: proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease. Ann. N. Y. Acad. Sci. 1126, 124–127 (2008)

    Article  PubMed  CAS  Google Scholar 

  73. R. Nagaraj, A. Panda, S. Shanthakumar, P. Santhoshkumar, N. Pasupuleti, B. Wang, A. Biswas, Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics. PLoS One 7(1), e30257 (2012)

    Article  PubMed  CAS  Google Scholar 

  74. T. Kumagai, M. Nangaku, I. Kojima, R. Nagai, J. Ingelfinger, T. Miyata, T. Fujita, R. Inagi, Glyoxalase I overexpression ameliorates renal ischemic-reperfusion injury in rats. Am. J. Physiol. Renal Physiol. 296, F912–F921 (2009)

    Article  PubMed  CAS  Google Scholar 

  75. P. Matafome, D. Santos-Silva, J. Crisóstomo, T. Rodrigues, L. Rodrigues, C. Sena, P. Pereira, R. Seiça, Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Arch. Physiol. Biochem. 118(2), 58–68 (2012)

    Article  PubMed  CAS  Google Scholar 

  76. J.W. Baynes, The Maillard hypothesis on aging: time to focus on DNA. Ann. N. Y. Acad. Sci. 959, 360–367 (2002)

    Article  PubMed  CAS  Google Scholar 

  77. M.J. Roberts, G.T. Wondrak, D.C. Laurean, M.K. Jacobson, E. Jacobson, DNA damage by carbonyl stress in human skin cells. Mutat. Res. 522(1–2), 45–56 (2003)

    PubMed  CAS  Google Scholar 

  78. P.J. Thornalley, Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem. Soc. Trans. 31(Pt 6), 1372–1377 (2003)

    Article  PubMed  CAS  Google Scholar 

  79. A. Guerin-Dubourg, A. Catan, E. Bourdon, P. Rondeau, Structural modifications of human albumin in diabetes. Diabetes Metab. 38(2), 171–178 (2012)

    Article  PubMed  CAS  Google Scholar 

  80. S. Yamagishi, Y. Inagaki, T. Okamoto, S. Amano, K. Koga, M. Takeuchi, Advanced glycation end products inhibit de novo protein synthesis and induce TGF-beta overexpression in proximal tubular cells. Kidney Int. 63(2), 464–473 (2003)

    Article  PubMed  CAS  Google Scholar 

  81. T. Lund, A. Svindland, M. Pepaj, A. Jensen, J. Berg, B. Kilhovd, K. Hanssen, Fibrin(ogen) may be an important target for methylglyoxal-derived AGE modification in elastic arteries of humans. Diab. Vasc. Dis. Res. 8(4), 284–294 (2011)

    Article  PubMed  Google Scholar 

  82. M. Mukohda, M. Okada, Y. Hara, H. Yamawaki, Exploring mechanisms of diabetes-related macrovascular complications: role of methylglyoxal, a metabolite of glucose on regulation of vascular contractility. J. Pharmacol. Sci. 118(3), 303–310 (2012)

    Article  PubMed  CAS  Google Scholar 

  83. M. Mukohda, T. Morita, M. Okada, Y. Hara, H. Yamawaki, Long-term methylglyoxal treatment impairs smooth muscle contractility in organ-cultured rat mesenteric artery. Pharmacol. Res. 65(1), 91–99 (2012)

    Article  PubMed  CAS  Google Scholar 

  84. A. Pozzi, R. Zent, S. Chetyrkin, C. Borza, N. Bulus, P. Chuang, D. Chen, B. Hudson, P. Voziyan, Modification of collagen IV by glucose or methylglyoxal alters distinct mesangial cell functions. J. Am. Soc. Nephrol. 20(10), 2119–2125 (2009)

    Article  PubMed  CAS  Google Scholar 

  85. V. Pedchenko, S. Chetyrkin, P. Chuang, A. Ham, M. Sallem, P. Mathieson, B. Hudson, P. Voziyan, Mechanisms of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes 54, 2952–2960 (2005)

    Article  PubMed  CAS  Google Scholar 

  86. D. Yao, T. Taguchi, T. Matsumura, R. Pestell, D. Edelstein, I. Giardino, G. Suske, N. Rabbani, P. Thornalley, V. Sarthy, H. Hammes, M. Brownlee, High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J. Biol. Chem. 282, 31038–31045 (2007)

    Article  PubMed  CAS  Google Scholar 

  87. H. Thangarajah, D. Yao, E. Chang, Y. Shi, L. Jazayeri, I. Vial, R. Galiano, X. Du, R. Grogan, M. Galvez, M. Januszyk, M. Brownlee, G. Gurtner, The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc. Natl. Acad. Sci. USA 106(32), 13505–13510 (2009)

    Article  PubMed  CAS  Google Scholar 

  88. C. Bento, R. Fernandes, J. Ramalho, C. Marques, F. Shang, A. Taylor, P. Pereira, The chaperone-dependent ubiquitin ligase chip targets HIF-1α for degradation in the presence of methylglyoxal. PLoS One 5(11), e15062 (2010)

    Article  PubMed  CAS  Google Scholar 

  89. C. Bento, R. Fernandes, P. Matafome, C. Sena, R. Seiça, P. Pereira, Methylglyoxal-induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Exp. Physiol. 95(9), 955–970 (2010)

    PubMed  CAS  Google Scholar 

  90. D. Vander Jagt, R. Hassebrook, L. Hunsaker, W. Brown, R. Royer, Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications. Chem. Biol. Interact. 130–132, 549–562 (2001)

    Article  PubMed  Google Scholar 

  91. G. Tang, Y. Minemoto, B. Dibling, N. Purcell, Z. Li, M. Karin, A. Lin, Inhibition of JNK activation through NF-κB target genes. Nature 414(6861), 6313–6317 (2001)

    Article  Google Scholar 

  92. M. Queisser, D. Yao, S. Geisler, H. Hammes, G. Lochnit, E. Schleicher, M. Brownlee, K. Preissner, Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59(3), 670–678 (2010)

    Article  PubMed  CAS  Google Scholar 

  93. A.K. Padival, J. Crabb, R. Nagaraj, Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells. FEBS Lett. 551(1–3), 113–118 (2003)

    Article  PubMed  CAS  Google Scholar 

  94. K. Desai, L. Wu, Free radical generation by methylglyoxal in tissues. Drug Metabol. Drug Interact. 23, 151–173 (2008)

    Article  PubMed  CAS  Google Scholar 

  95. L. Wu, B. Juurlink, Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 39, 809–814 (2002)

    Article  PubMed  CAS  Google Scholar 

  96. T. Chang, R. Wang, L. Wu, Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radic. Biol. Med. 38, 286–293 (2005)

    Article  PubMed  CAS  Google Scholar 

  97. A. Dhar, K. Desai, M. Kazachmov, P. Yu, L. Wu, Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism 57, 1211–1220 (2008)

    Article  PubMed  CAS  Google Scholar 

  98. C. Sena, P. Matafome, J. Crisóstomo, L. Rodrigues, R. Fernandes, P. Pereira, R. Seiça, Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res. 65(5), 497–506 (2012)

    Article  PubMed  CAS  Google Scholar 

  99. R. Ward, K. McLeish, Methylglyoxal: a stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrol. Dial. Transplant. 19, 1702–1707 (2004)

    Article  PubMed  CAS  Google Scholar 

  100. G. Leoncini, M. Poggi, Effects of methylglyoxal on platelet hydrogen peroxide accumulation, aggregation and release reaction. Cell Biochem. Funct. 14, 89–95 (1996)

    PubMed  CAS  Google Scholar 

  101. M.P. Kalapos, A. Littauer, H. de Groot, Has reactive oxygen a role in methylglyoxal toxicity? A study on cultured rat hepatocytes. Arch. Toxicol. 67, 369–372 (1993)

    Article  PubMed  CAS  Google Scholar 

  102. S. Di Loreto, V. Caracciolo, S. Colafarina, P. Sebastiani, A. Gasbarri, F. Amicarelli, Methylglyoxal induces oxidative stress-dependent cell injury and up-regulation of interleukin-1beta and nerve growth factor in cultured hippocampal neuronal cells. Brain Res. 1006, 157–167 (2004)

    Article  PubMed  CAS  Google Scholar 

  103. A. Akhand, K. Hossain, H. Mitsui, M. Kato, T. Miyata, R. Inagi, J. Du, K. Takeda, Y. Kawamoto, H. Suzuki, K. Kurokawa, I. Nakashima, Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic. Biol. Med. 31, 20–30 (2001)

    Article  PubMed  CAS  Google Scholar 

  104. A. Uriuhara, S. Miyata, B. Liu, H. Miyazaki, H. Kusunoki, H. Kojima, Y. Yamashita, K. Suzuki, K. Inaba, M. Kasuga, Methylglyoxal induces prostaglandin E2 production in rat mesangial cells. Kobe J. Med. Sci. 53(6), 305–315 (2008)

    PubMed  Google Scholar 

  105. S. Kikuchi, K. Shinpo, F. Moriwaka, Z. Makita, T. Miyata, K. Tashiro, Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res. 57, 280–289 (1999)

    Article  PubMed  CAS  Google Scholar 

  106. F. Amicarelli, S. Colafarina, F. Cattani, A. Cimini, C. Di Ilio, M. Ceru, M. Miranda, Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury. Free Radic. Biol. Med. 35, 856–871 (2003)

    Article  PubMed  CAS  Google Scholar 

  107. C. Paget, M. Lecomte, D. Ruggiero, N. Wiernsperger, M. Lagarde, Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free. Radic. Biol. Med. 25, 121–129 (1998)

    Article  PubMed  CAS  Google Scholar 

  108. H. Wang, J. Liu, L. Wu, Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochem. Pharmacol. 77, 1709–1716 (2009)

    Article  PubMed  CAS  Google Scholar 

  109. K. Desai, T. Chang, H. Wang, A. Banigesh, A. Dhar, J. Liu, A. Untereiner, L. Wu, Oxidative stress and aging: is methylglyoxal the hidden enemy? Can. J. Physiol. Pharmacol. 88, 273–284 (2010)

    Article  PubMed  CAS  Google Scholar 

  110. D. Yao, M. Brownlee, Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59, 249–255 (2010)

    Article  PubMed  CAS  Google Scholar 

  111. S. Yan, R. Ramasamy, Y. Naka, A. Schmidt, Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 93(12), 1159–1169 (2003)

    Article  PubMed  CAS  Google Scholar 

  112. R. Ramasamy, S. Yan, A. Schmidt, Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids 42(4), 1151–1161 (2012)

    Article  PubMed  CAS  Google Scholar 

  113. H. Ueno, H. Koyama, T. Shoji, M. Monden, S. Fukumoto, S. Tanaka, Y. Otsuka, Y. Mima, T. Morioka, K. Mori, A. Shioi, H. Yamamoto, M. Inaba, Y. Nishizawa, Receptor for advanced glycation end products (RAGE) regulation of adiposity and adiponectin is associated with atherogenesis in apoE deficient mouse. Atherosclerosis 211(2), 431–436 (2010)

    Article  PubMed  CAS  Google Scholar 

  114. B. Leuner, M. Max, K. Thamm, C. Kausler, Y. Yakobus, A. Bierhaus, S. Sel, B. Hofmann, R. Silber, A. Simm, N. Nass, RAGE influences obesity in mice. Effects of the presence of RAGE on weight gain, AGE accumulation, and insulin levels in mice on a high fat diet. Z. Gerontol. Geriatr. 45(2), 102–108 (2012)

    Article  PubMed  CAS  Google Scholar 

  115. Y. Hattori, H. Kakishita, K. Akimoto, M. Matsumura, K. Kasai, Glycated serum albumin-induced vascular smooth muscle cell proliferation through activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by protein kinase C. Biochem. Biophys. Res. Commun. 281(4), 891–896 (2001)

    Article  PubMed  CAS  Google Scholar 

  116. C. Lu, J. He, W. Cai, H. Liu, L. Zhu, H. Vlassara, Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc. Natl. Acad. Sci. USA 101(32), 11767–11772 (2004)

    Article  PubMed  CAS  Google Scholar 

  117. W. Cai, J.C. He, L. Zhu, X. Chen, G. Striker, H. Vlassara, AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am. J. Physiol. Cell Physiol. 294(1), C145–C152 (2008)

    Article  PubMed  CAS  Google Scholar 

  118. W. Cai, M. Torreggiani, L. Zhu, X. Chen, J. He, G. Striker, H. Vlassara, AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. Am. J. Physiol. Cell Physiol. 298(3), C624–C634 (2010)

    Article  PubMed  CAS  Google Scholar 

  119. J. Skrha Jr, J. Gáll, R. Buchal, E. Sedláčková, J. Pláteník, Glucose and its metabolites have distinct effects on the calcium-induced mitochondrial permeability transition. Folia Biol. (Praha) 57(3), 96–103 (2011)

    Google Scholar 

  120. A. Remor, F. de Matos, K. Ghisoni, T. da Silva, G. Eidt, M. Búrigo, A. de Bem, P. Silveira, A. de León, M. Sanchez, A. Hohl, V. Glaser, C. Gonçalves, A. Quincozes-Santos, R. Borba Rosa, A. Latini, Differential effects of insulin on peripheral diabetes-related changes in mitochondrial bioenergetics: involvement of advanced glycosylated end products. Biochim. Biophys. Acta. 1812(11), 1460–1471 (2011)

    Article  PubMed  CAS  Google Scholar 

  121. B. Liu, S. Miyata, Y. Hirota, S. Higo, H. Miyazaki, M. Fukunaga, Y. Hamada, S. Ueyama, O. Muramoto, A. Uriuhara, M. Kasuga, Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells. Kidney Int. 63(3), 947–957 (2003)

    Article  PubMed  CAS  Google Scholar 

  122. C. Ho, P. Lee, W. Huang, Y. Hsu, C. Lin, J. Wang, Methylglyoxal-induced fibronectin gene expression through Ras-mediated NADPH oxidase activation in renal mesangial cells. Nephrology (Carlton) 12(4), 348–356 (2007)

    Article  CAS  Google Scholar 

  123. J. Kim, O. Kim, C. Kim, N. Kim, J. Kim, Cytotoxic role of methylglyoxal in rat retinal pericytes: involvement of a nuclear factor-kappaB and inducible nitric oxide synthase pathway. Chem. Biol. Interact. 188(1), 86–93 (2010)

    Article  PubMed  CAS  Google Scholar 

  124. M. Kalapos, The tandem of free radicals and methylglyoxal. Chem. Biol. Interact. 171(3), 251–271 (2008)

    Article  PubMed  CAS  Google Scholar 

  125. J. Du, S. Cai, H. Suzuki, A. Akhand, X. Ma, Y. Takagi, T. Miyata, I. Nakashima, F. Nagase, Involvement of MEKK1/ERK/P21Waf1/Cip1 signal transduction pathway in inhibition of IGF-I-mediated cell growth response by methylglyoxal. J. Cell. Biochem. 88(6), 1235–1246 (2003)

    Article  PubMed  CAS  Google Scholar 

  126. C. Schalkwijk, O. Brouwers, C. Stehouwer, Modulation of insulin action by advanced glycation endproducts: a new player in the field. Horm. Metab. Res. 40(9), 614–619 (2008)

    Article  PubMed  CAS  Google Scholar 

  127. A. Riboulet-Chavey, A. Pierron, I. Durand, J. Murdaca, J. Giudicelli, E. Van Obberghen, Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 55(5), 1289–1299 (2006)

    Article  PubMed  CAS  Google Scholar 

  128. X. Jia, L. Wu, Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. Mol. Cell. Biochem. 306, 133–139 (2007)

    Article  PubMed  CAS  Google Scholar 

  129. A. Dhar, I. Dhar, B. Jiang, K. Desai, L. Wu, Chronic methylglyoxal infusion by minipump causes pancreatic beta-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes 60(3), 899–908 (2011)

    Article  PubMed  CAS  Google Scholar 

  130. Q. Guo, T. Mori, Y. Jiang, C. Hu, Y. Osaki, Y. Yoneki, Y. Sun, T. Hosoya, A. Kawamata, S. Ogawa, M. Nakayama, T. Miyata, S. Ito, Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. J. Hypertens. 27(8), 1664–1671 (2009)

    Article  PubMed  CAS  Google Scholar 

  131. S. Hofmann, H. Dong, Z. Li, W. Cai, J. Altomonte, S. Thung, F. Zeng, E. Fisher, H. Vlassara, Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 51(7), 2082–2089 (2002)

    Article  PubMed  CAS  Google Scholar 

  132. F. Fiory, A. Lombardi, C. Miele, J. Giudicelli, F. Beguinot, E. Van Obberghen, Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia 54(11), 2941–2952 (2011)

    Article  PubMed  CAS  Google Scholar 

  133. L. Cook, J. Davies, A. Yates, A. Elliott, J. Lovell, J. Joule, P. Pemberton, P.J. Thornalley, L. Best, Effects of methylglyoxal on rat pancreatic beta-cells. Biochem. Pharmacol. 55(9), 1361–1367 (1998)

    Article  PubMed  CAS  Google Scholar 

  134. J.W. Baynes, S. Thorpe, Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 28, 1708–1716 (2000)

    Article  PubMed  CAS  Google Scholar 

  135. T. Chang, L. Wu, Methylglyoxal, oxidative stress, and hypertension. Can. J. Physiol. Pharmacol. 84, 1229–1238 (2006)

    Article  PubMed  CAS  Google Scholar 

  136. D. Vander Jagt, L. Hunsaker, T. Vander Jagt, M. Gomez, D. Gonzales, L. Deck, R. Royer, Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem. Pharmacol. 53, 1133–1140 (1997)

    Article  PubMed  CAS  Google Scholar 

  137. S. Hou, P. Nori, J. Fang, C. Vaca, Methylglyoxal induces hprt mutation and DNA adducts in human T lymphocytes in vitro. Environ. Mol. Mutagen. 26, 286–291 (1995)

    Article  PubMed  CAS  Google Scholar 

  138. Y. Kang, L. Edwards, P.J. Thornalley, Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNA G1 growth arrest and induction of apoptosis. Leuk. Res. 20, 397–405 (1996)

    Article  PubMed  CAS  Google Scholar 

  139. J. Du, H. Suzuki, F. Nagase, A. Akhand, X. Ma, T. Yokoyama, T. Miyata, I. Nakashima, Superoxide-mediated early oxidation and activation of ASK1 are important for initiating methylglyoxal-induced apoptosis process. Free Radic. Biol. Med. 31, 469–478 (2001)

    Article  PubMed  CAS  Google Scholar 

  140. A. Okado, Y. Kawasaki, Y. Hasuike, M. Takahashi, T. Teshima, J. Fujii, N. Taniguchi, Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines. Biochem. Biophys. Res. Commun. 225, 219–224 (1996)

    Article  PubMed  CAS  Google Scholar 

  141. A. De Vriese, J. Van De Voorde, H. Blom, P. Vanhoutte, M. Verbeke, N. Lameire, The impaired renal vasodilator response attributed to endothelium-derived hyperpolarizing factor in streptozotocin-induced diabetic rats is restored by 5-methyltetrahydrofolate. Diabetologia 43, 1116–1125 (2000)

    Article  PubMed  Google Scholar 

  142. H. Ding, M. Hashem, W. Wiehler, W. Lau, J. Martin, J. Reid, C. Triggle, Endothelial dysfunction in the streptozotocin-induced diabetic apoE deficient mouse. Br. J. Pharmacol. 146, 1110–1118 (2005)

    Article  PubMed  CAS  Google Scholar 

  143. M. Pannirselvam, W. Wiehler, T. Anderson, C. Triggle, Enhanced vascular reactivity of small mesenteric arteries from diabetic mice is associated with enhanced oxidative stress and cyclooxygenase products. Br. J. Pharmacol. 144, 953–960 (2005)

    Article  PubMed  CAS  Google Scholar 

  144. C. Sena, E. Nunes, T. Louro, T. Proença, R. Fernandes, M. Boarder, R. Seiça, Effects of alpha-lipoic acid on endothelial function in aged diabetic and high-fat fed rats. Br. J. Pharmacol. 153, 894–906 (2008)

    Article  PubMed  CAS  Google Scholar 

  145. N. Rabbani, L. Godfrey, M. Xue, F. Shaheen, M. Geoffrion, R. Milne, P.J. Thornalley, Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes 60(7), 1973–1980 (2011)

    Article  PubMed  CAS  Google Scholar 

  146. P. Thornalley, Dicarbonyl intermediates in the Maillard reaction. Ann. N. Y. Acad. Sci. 1043, 111–117 (2005)

    Article  PubMed  CAS  Google Scholar 

  147. N. Rabbani, M. Chittari, C. Bodmer, D. Zehnder, A. Ceriello, P.J. Thornalley, Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin. Diabetes 59, 1038–1045 (2010)

    Article  PubMed  CAS  Google Scholar 

  148. P. Beisswenger, S.K. Howell, A. Touchette, S. Lal, B. Szwergold, Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48, 198–202 (1999)

    Article  PubMed  CAS  Google Scholar 

  149. X. Wang, K. Desai, T. Chang, L. Wu, Vascular methylglyoxal metabolism and the development of hypertension. J. Hypertens. 23, 1565–1573 (2005)

    Article  PubMed  CAS  Google Scholar 

  150. X. Wang, K. Desai, J. Clausen, L. Wu, Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney Int. 66, 2315–2321 (2004)

    Article  PubMed  CAS  Google Scholar 

  151. X. Wang, X. Jia, T. Chang, K. Desai, L. Wu, Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J. Hypertens. 26, 765–772 (2008)

    Article  PubMed  CAS  Google Scholar 

  152. S. Ogawa, K. Nakayama, M. Nakayama, T. Mori, M. Matsushima, M. Okamura, M. Senda, K. Nako, T. Miyata, S. Ito, Methylglyoxal is a predictor in type 2 diabetic patients of intima-media thickening and elevation of blood pressure. Hypertension 56, 471–476 (2010)

    Article  PubMed  CAS  Google Scholar 

  153. M. Beeri, E. Moshier, J. Schmeidler, J. Godbold, J. Uribarri, S. Reddy, M. Sano, H. Grossman, W. Cai, H. Vlassara, J. Silverman, Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech. Ageing Dev. 132(11–12), 583–587 (2011)

    Article  PubMed  CAS  Google Scholar 

  154. M. Fukunaga, S. Miyata, S. Higo, Y. Hamada, S. Ueyama, M. Kasuga, Methylglyoxal induces apoptosis through oxidative stress-mediated activation of p38 mitogen-activated protein kinase in rat Schwann cells. Ann. N. Y. Acad. Sci. 1043, 151–157 (2005)

    Article  PubMed  CAS  Google Scholar 

  155. J. Berlanga, D. Cibrian, I. Guillén, F. Freyre, J. Alba, P. Lopez-Saura, N. Merino, A. Aldama, A. Quintela, M. Triana, J. Montequin, H. Ajamieh, D. Urquiza, N. Ahmed, P.J. Thornalley, Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin. Sci. (Lond) 109(1), 83–95 (2005)

    Article  CAS  Google Scholar 

  156. X. Wang, W. Lau, Y. Yuan, Y. Wang, W. Yi, T. Christopher, B. Lopez, H. Liu, X. Ma, Methylglyoxal increases cardiomyocyte ischemia-reperfusion injury via glycative inhibition of thioredoxin activity. Am. J. Physiol. Endocrinol. Metab. 299(2), E207–E214 (2010)

    PubMed  CAS  Google Scholar 

  157. L. Vona-Davis, D. Rose, Angiogenesis, adipokines and breast cancer. Cytokine Growth Factor Rev. 20, 193–201 (2009)

    Article  PubMed  CAS  Google Scholar 

  158. A. Ozdemir, U. Hopfer, M. Rosca, X. Fan, V. Monnier, M. Weiss, Effects of advanced glycation end product modification on proximal tubule epithelial cell processing of albumin. Am. J. Nephrol. 28(1), 14–24 (2008)

    Article  PubMed  CAS  Google Scholar 

  159. M. Coughlan, S. Patel, G. Jerums, S. Penfold, T. Nguyen, K. Sourris, S. Panagiotopoulos, P. Srivastava, M. Cooper, L. Burrell, R. Macisaac, J. Forbes, Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. Am. J. Nephrol. 34(4), 347–355 (2011)

    Article  PubMed  CAS  Google Scholar 

  160. S. Mauer, M. Steffes, E. Ellis, D. Sutherland, D. Brown, F. Goetz, Structural-functional relationships in diabetic nephropathy. J. Clin. Invest. 74, 1143–1155 (1984)

    Article  PubMed  CAS  Google Scholar 

  161. A. Mostafa, E. Randell, S. Vasdev, V. Gill, Y. Han, V. Gadag, A. Raouf, H. El Said, Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes. Mol. Cell. Biochem. 302(1–2), 35–42 (2007)

    Article  PubMed  CAS  Google Scholar 

  162. B. Harcourt, K. Sourris, M. Coughlan, K. Walker, S. Dougherty, S. Andrikopoulos, A. Morley, V. Thallas-Bonke, V. Chand, S. Penfold, M. de Courten, M.C. Thomas, B.A. Kingwell, A. Bierhaus, M.E. Cooper, B. Courten, J.M. Forbes, Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int. 80(2), 190–198 (2011)

    Article  PubMed  CAS  Google Scholar 

  163. S. Tang, L. Chan, J. Leung, A. Cheng, M. Lin, H. Lan, K. Lai, Differential effects of advanced glycation end-products on renal tubular cell inflammation. Nephrology (Carlton). 16(4), 417–425 (2011)

    Article  CAS  Google Scholar 

  164. M. Rosca, T. Mustata, M. Kinter, A. Ozdemir, T. Kern, L. Szweda, M. Brownlee, V. Monnier, M. Weiss, Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am. J. Physiol. Renal. Physiol. 289, F420–F430 (2005)

    Article  PubMed  CAS  Google Scholar 

  165. Y. Zhao, S. Banerjee, W. LeJeune, S. Choudhary, R. Tilton, NF-κB-inducing kinase increases renal tubule epithelial inflammation associated with diabetes. Exp. Diabetes Res. 2011, 192564 (2011)

    Article  PubMed  CAS  Google Scholar 

  166. S. Nakatani, A. Kakehashi, E. Ishimura, S. Yamano, K. Mori, M. Wei, M. Inaba, H. Wanibuchi, Targeted proteomics of isolated glomeruli from the kidneys of diabetic rats: sorbin and SH3 domain containing 2 is a novel protein associated with diabetic nephropathy. Exp. Diabetes Res. 2011, 979354 (2011)

    Article  PubMed  CAS  Google Scholar 

  167. A. Diez-Sampedro, O. Lenz, A. Fornoni, Podocytopathy in diabetes: a metabolic and endocrine disorder. Am. J. Kidney Dis. 58(4), 637–646 (2011)

    Article  PubMed  Google Scholar 

  168. D. Fosmark, J. Berg, A. Jensen, L. Sandvik, E. Agardh, C. Agardh, K. Hanssen. Increased retinopathy occurrence in type 1 diabetes patients with increased serum levels of the advanced glycation endproduct hydroimidazolone. Acta Ophthalmol. 87(5), 498–500 (2009)

    Article  PubMed  CAS  Google Scholar 

  169. Z. Wagner, P. Degrell, B. Lukáts, T. Niwa, G. Molnár, L. Markó, Z. Karádi, I. Wittmann, Accumulation of renin and imidazolone in peritubular capillary endothelial cells in insulin-resistant hypertensive rats. J. Nephrol. 24(5), 656–664 (2011)

    Article  PubMed  CAS  Google Scholar 

  170. X. Wang, K. Desai, B. Juurlink, J. de Champlain, L. Wu, Gender-related differences in advanced glycation endproducts, oxidative stress markers and nitric oxide synthases in rats. Kidney Int. 69(2), 281–287 (2006)

    Article  PubMed  CAS  Google Scholar 

  171. N. Reiniger, K. Lau, D. McCalla, B. Eby, B. Cheng, Y. Lu, W. Qu, N. Quadri, R. Ananthakrishnan, M. Furmansky, R. Rosario, F. Song, V. Rai, A. Weinberg, R. Friedman, R. Ramasamy, V. D’Agati, A. Schmidt, Deletion of the receptor for advanced Glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse. Diabetes 59, 2043–2054 (2010)

    Article  PubMed  CAS  Google Scholar 

  172. D. Fosmark, J. Berg, A. Jensen, L. Sandvik, E. Agardh, C. Agardh, K. Hanssen, Increased retinopathy occurrence in type 1 diabetes patients with increased serum levels of the advanced glycation endproduct hydroimidazolone. Acta Ophthalmol. 87(5), 498–500 (2009)

    Article  PubMed  CAS  Google Scholar 

  173. O. Kim, J. Kim, C. Kim, N. Kim, J. Kim, KIOM-79 prevents methyglyoxal-induced retinal pericyte apoptosis in vitro and in vivo. J. Ethnopharmacol. 129(3), 285–292 (2010)

    Article  PubMed  Google Scholar 

  174. J. Kim, J. Son, J. Lee, Y. Oh, S. Shinn, Methylglyoxal induces apoptosis mediated by reactive oxygen species in bovine retinal pericytes. J. Korean Med. Sci. 19(1), 95–100 (2004)

    Article  PubMed  CAS  Google Scholar 

  175. R. Milne, S. Brownstein. Advanced glycation end products and diabetic retinopathy. Amino Acids (2011) [Epub Ahead of Print]

  176. J. Kim, C. Kim, Y. Lee, K. Jo, S. Shin, J. Kim, Methylglyoxal induces hyperpermeability of the bloodretinal barrier via the loss of tight junction proteins and the activation of matrix metalloproteinases. Graefes Arch. Clin. Exp. Ophthalmol. 250(5), 691–697 (2012)

    Article  PubMed  CAS  Google Scholar 

  177. O. Brouwers, P. Niessen, I. Ferreira, T. Miyata, P. Scheffer, T. Teerlink, P. Schrauwen, M. Brownlee, C. Stehouwer, C. Schalkwijk, Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation endproducts and oxidative stress in diabetic rats. J. Biol. Chem. 286(2), 1374–1380 (2011)

    Article  PubMed  CAS  Google Scholar 

  178. A. Sartori, H. Garay-Malpartida, M. Forni, R. Schumacher, F. Dutra, M. Sogayar, E. Bechara, Aminoacetone, a putative endogenous source of methylglyoxal, causes oxidative stress and death in insulin-producing RINm5f cells. Chem. Res. Toxicol. 21(9), 1841–1850 (2008)

    Article  PubMed  CAS  Google Scholar 

  179. I. Nemet, L. Varga-Defterdarović, Z. Turk, Methylglyoxal in food and living organisms. Mol. Nutr. Food Res. 50(12), 1105–1117 (2006)

    Article  PubMed  CAS  Google Scholar 

  180. J. Adolphe, M. Drew, Q. Huang, T. Silver, L. Weber, Postprandial impairment of flow-mediated dilation and elevated methylglyoxal after simple but not complex carbohydrate consumption in dogs. Nutr. Res. 32(4), 278–284 (2012)

    Article  PubMed  CAS  Google Scholar 

  181. P.J. Beisswenger, S.K. Howell, R.M. O’Dell, M.E. Wood, A.D. Touchette, B.S. Szwergold, alpha-Dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care 24(4), 726–732 (2001)

    Article  PubMed  CAS  Google Scholar 

  182. A.G. Miller, G. Tan, K.J. Binger, R.J. Pickering, M.C. Thomas, R.H. Nagaraj, M.E. Cooper, J.L. Wilkinson-Berka, Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes 59(12), 3208–3215 (2010)

    Article  PubMed  CAS  Google Scholar 

  183. J. Xue, V. Rai, D. Singer, S. Chabierski, J. Xie, S. Reverdatto, D.S. Burz, A.M. Schmidt, R. Hoffmann, A. Shekhtman, Advanced glycation end product recognition by the receptor for AGEs. Structure 19(5), 722–732 (2011)

    Article  PubMed  CAS  Google Scholar 

  184. R. Ramasamy, S. Yan, A. Schmidt, Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann. N. Y. Acad. Sci. 1243, 88–102 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Matafome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matafome, P., Sena, C. & Seiça, R. Methylglyoxal, obesity, and diabetes. Endocrine 43, 472–484 (2013). https://doi.org/10.1007/s12020-012-9795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9795-8

Keywords

Navigation