Skip to main content
Log in

Influence of levothyroxine treatment on serum levels of soluble Fas (CD95) and Fas Ligand (CD95L) in chronic autoimmune hypothyroidism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Fas/FasL-mediated apoptosis results in the destruction of thyrocytes in chronic autoimmune hypothyroidism (CAIH). In this study, we examined the serum levels of soluble Fas (sFas) and soluble sFas ligand (sFasL) in euthyroid patients with chronic autoimmune hypothyroidism, who were taking levothyroxine (euthyroid, LT4-CAIH), to investigate the possible role of thyroid hormone therapy in down-regulation of apoptotic factors. Fifty euthyroid patients with CAIH on levothyroxine (median of duration 36 months, range 6–228 months) were compared with 75 age- and sex-matched healthy individuals. Serum levels of soluble Fas and soluble Fas Ligand, autoantibodies to thyroid peroxide and thyroglobulin were measured using ELISA. Serum levels of sFas were significantly higher in the euthyroid, LT4-CAIH group [median 9.12 ng/ml, interquartile range (7.86–10.72 ng/ml)] than in the controls [6.11 ng/ml (5.60–6.81 ng/ml)] (P < 0.0001). Compared with controls [80.33 pg/ml (68.22–103.70 pg/ml)], the euthyroid, LT4-CAIH group [125.71 pg/ml (106.11–149.48 pg/ml)] had significantly higher levels of sFasL (P < 0.0001). In a chronological study, there was no significant correlation between sFas, sFasL, and the duration of levothyroxine therapy. In conclusion, normalization of serum sFas and sFasL levels cannot be achieved during levothyroxine treatment in patients with CAIH. It appears that levothyroxine therapy has no important effect on down-regulation of apoptotic factors in CAIH. Thus, like thyroid autoantibodies, monitoring of serum levels of sFas/sFasL is not indicated during thyroid hormone therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Nagata, P. Golstein, Science 267, 1449–1456 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. A. Strasser, P.J. Jost, S. Nagata, Immunity 30, 180–192 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. G. Stassi, A. Zeuner, D. Di Liberto et al., Clin. Immunol. 21, 19–23 (2001)

    Article  CAS  Google Scholar 

  4. M. Andrikoula, A. Tsatsoulis, Eur. J. Endocrinol. 144, 561–568 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. L.J. Hammond, F.F. Palazzo, M. Shattock et al., Thyroid 11, 919–927 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. L.J. Hammond, M.W. Lowdell, P.G. Cerrano et al., J. Pathol. 182, 138–144 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. J. Cheng, T. Zhou, C. Liu et al., Science 263, 1759–1762 (1994)

    Article  CAS  PubMed  Google Scholar 

  8. T. Suda, H. Hashimoto, M. Tanaka et al., J. Exp. Med. 186, 2045–2050 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. N. Kayagaki, A. Kawasaki, T. Ebata, J. Exp. Med. 182, 1777–1783 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. P. Schneider, N. Holler, J.L. Bodmer et al., J. Exp. Med. 187, 1205–1213 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. S.H. Wang, J.R. Baker, Thyroid 17, 975–979 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. O.A. Sukocheva, D.O. Carpenter, J. Endocrinol. 191, 447–458 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. J.B. Laoag-Fernandez, H. Matsuo, H. Murakoshi et al., J. Clin. Endocrinol. Metab. 89, 4069–4077 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. M. Ghorbel, I. Seugnet, A.M. Ableitner et al., Neurosci Lett. 231, 127–130 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. F. Varga, E. Luegmayr, N. Fratzl-Zelman et al., J. Endocrinol. 160, 57–65 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. M. Hara, S. Suzuki, J. Mori et al., Thyroid 10, 1023–1034 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. N. Saelim, D. Holstein, E.S. Chocron et al., Apoptosis 12, 1781–1794 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. M. Pietrzak, M. Puzianowska-Kuznicka, J. Mol. Endocrinol. 41, 177–186 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. H.Y. Lin, H.Y. Tang, A. Shih et al., Steroids 72, 180–187 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. H.Y. Lin, H.Y. Tang, T. Keating et al., Carcinogen 29, 62–69 (2008)

    Article  CAS  Google Scholar 

  21. T.H. Brix, K.O. Kyvik, L. Hegedüs, J. Clin. Endocrinol. Metab. 85, 536–539 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. World Health Organization, United Nations Children’s Fund, International Council for Control of Iodine Deficiency Disorders, Assessment of the Iodine Deficiency Disorders and Monitoring their Elimination. (World Health Organization, Geneva, 2001), WHO document WHO/NHD/01.1

  23. Y. Shimaoka, Y. Hidaka, M. Okumura et al., Thyroid 8, 43–47 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Hiromatsu, T. Bednarczuk, E. Soyejima et al., Thyroid 9, 341–345 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. C.Y. Wang, W.B. Zhong, T.C. Chang et al., Metabolism 51, 769–773 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. F. Rogowski, A. Parfieńczyk, A. Sopotyk et al., Nucl. Med. Rev. Cent. East Eur. 7, 117–122 (2004)

    PubMed  Google Scholar 

  27. W. Zhao, B.L. Gao, M. Tian et al., J. Clin. Invest. Med. 32, E158–E165 (2009)

    Google Scholar 

  28. K. Maeda, Y. Ohara, M. Hashimoto, Clin. Ophthalmol. 2, 609–612 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. L. Xerri, E. Devilard, J. Hassoun et al., Mol. Pathol. 50, 87–91 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. S. Fountoulakis, G. Vartholomatos, N. Kolaitis et al., Eur. J. Endocrinol. 158, 853–859 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. J. Myśliwiec, M. Okota, A. Nikołajuk, Adv. Med. Sci. 51, 119–122 (2006)

    PubMed  Google Scholar 

  32. J. Mysliwiec, M. Oklota, A. Nikolajuk et al., Immunol. Invest. 36, 247–257 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. J. Feldkamp, E. Pascher, M. Schott et al., Clin. Endocrinol. Metab. 86, 4250–4253 (2001)

    Article  CAS  Google Scholar 

  34. K. Ohtsuka, M. Hashimoto, Br. J. Ophthalmol. 84, 103–106 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. J. Myśliwiec, A. Kretowski, A. Stepień et al., Pol. Merkur. Lekarski. 17, 368–370 (2004)

    PubMed  Google Scholar 

  36. M. Andrikoula, N. Kolaitis, G. Vartholomatos et al., Immunol. Invest. 38, 398–407 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. K. Kolomecki, P. Maciaszczyk, H. Stepien et al., Bratisl. Lek. Listy. 106, 297–300 (2005)

    CAS  PubMed  Google Scholar 

  38. B. Rapoport, S.M. McLachlan, J. Clin. Invest. 108, 1253–1259 (2001)

    CAS  PubMed  Google Scholar 

  39. L. Hegedüs, J.M. Hansen, U. Feldt-Rasmussen, Clin. Endocrinol. 35, 235–238 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant No 89.1.PGRC of the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Nabipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabipour, I., Kalantarhormozi, M., Assadi, M. et al. Influence of levothyroxine treatment on serum levels of soluble Fas (CD95) and Fas Ligand (CD95L) in chronic autoimmune hypothyroidism. Endocr 38, 406–411 (2010). https://doi.org/10.1007/s12020-010-9401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9401-x

Keywords

Navigation