Skip to main content

Advertisement

Log in

Clinical Application of Spine Trabecular Bone Score (TBS)

  • Assessment of bone health
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Trabecular bone score (TBS) is a software program recently approved by the US Food and Drug Administration for post-acquisition processing of lumbar spine dual-energy X-ray absorptiometry images that allows assessment of bone texture as a surrogate for bone microarchitecture. Low TBS values are associated with increased risk of major osteoporotic fracture risk in postmenopausal women and men aged 40 years and older independent of BMD. TBS data can be used to adjust FRAX probability of fracture. As such, TBS data can be useful in osteoporosis treatment initiation decisions. Following treatment initiation, TBS increases are smaller than seen with BMD; at present, there is insufficient evidence that TBS can be used to monitor treatment. TBS may be particularly helpful in fracture risk prediction for those with diabetes mellitus or receiving glucocorticoid therapy, but additional validation of existing observations is needed. In summary, TBS should not be used alone to guide treatment initiation, but can be used with FRAX to estimate fracture probability in postmenopausal women and older men, thereby facilitating treatment initiation decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud KE, Browner W, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res. 2003;18:1947–54.

    Article  PubMed  Google Scholar 

  2. Kanis JA, Melton LJI, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–41.

    Article  CAS  PubMed  Google Scholar 

  3. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP. Updated data on proximal femur bone mineral levels of U.S. adults. Osteoporos Int. 1998;8:468–89.

    Article  CAS  PubMed  Google Scholar 

  4. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJI, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42:467–75.

    Article  CAS  PubMed  Google Scholar 

  5. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94.

    Article  PubMed  Google Scholar 

  6. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J. 1996;312:1254–9.

    Article  CAS  Google Scholar 

  7. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.

    Article  PubMed  Google Scholar 

  8. Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34:195–202.

    Article  CAS  PubMed  Google Scholar 

  9. Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. Can Med Assoc J. 2007;177(6):575–80.

    Article  Google Scholar 

  10. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone. 2008;42(4):775–87.

    Article  PubMed  Google Scholar 

  11. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom. 2009;12(2):170–6.

    Article  PubMed  Google Scholar 

  12. Krueger D, Libber J, Binkley N. Spine trabecular bone score precision, a comparison between GE lunar standard and high-resolution densitometers. J Clin Densitom. 2015;18:226–32.

    Article  PubMed  Google Scholar 

  13. Leslie WD, Lix L, Morin S, Majumdar S, Hans D. Difference in Spine TBS between men and women: real or technical? J Clin Densitom. 2014;17(3):406–7.

    Article  Google Scholar 

  14. Leslie WD, Winzenrieth R, Majumdar S, Lix L, Hans D. Clinical performance of an updated version of trabecular bone score in men and women: the Manitoba BMD cohort. J Bone Miner Res 2015;29 Suppl 1. http://www.asbmr.org/education/AbstractDetail?aid=87225632-521c-4347-a67b-bd6ee790990c

  15. Kolta S, Briot K, Fechtenbaum J, Paternotte S, Armbrecht G, Felsenberg D, et al. TBS result is not affected by lumbar spine osteoarthritis. Osteoporos Int. 2014;25(6):1759–64.

    Article  CAS  PubMed  Google Scholar 

  16. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302–12.

    Article  PubMed  Google Scholar 

  17. Bousson V, Bergot C, Sutter B, Levitz P, Cortet B. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–501.

    Article  CAS  PubMed  Google Scholar 

  18. Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom. 2015;18:309–30.

    Article  PubMed  Google Scholar 

  19. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013;24(9):2455–60.

    Article  CAS  PubMed  Google Scholar 

  20. Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, Pietschmann P, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone. 2015;79:259–66.

    Article  PubMed  Google Scholar 

  21. Maquer G, Lu Y, Dall’Ara E, Chevalier Y, Krause M, Yang L, et al. The initial slope of the variogram, foundation of the trabecular bone score, is not or is poorly associated with vertebral strength. J Bone Miner Res. 2015;. doi:10.1002/jbmr.2610.

    Google Scholar 

  22. Silva BC, Boutroy S, Zhang C, McMahon DJ, Zhou B, Wang J, et al. Trabecular bone score (TBS)—a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013;98(5):1963–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Popp AW, Buffat H, Eberli U, Lippuner K, Ernst M, Richards RG, et al. Microstructural parameters of bone evaluated using HR-pQCT correlate with the DXA-derived cortical index and the trabecular bone score in a cohort of randomly selected premenopausal women. PLoS One. 2014;9(2):e88946.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Amstrup A, Jakobsen N, Moser E, Sikjaer T, Mosekilde L, Rejnmark L. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab. 2015;. doi:10.1007/s00774-015-0708-9.

    PubMed  Google Scholar 

  25. Bousson V, Bergot C, Sutter B, Thomas T, Bendavid S, Benhamou C-L, et al. Trabecular bone score: Where are we now? Joint Bone Spine. 2015;82(5):320–5.

    Article  PubMed  Google Scholar 

  26. El Hage R, Khairallah W, Bachour F, Issa M, Eid R, et al. Influence of age, morphological characteristics, and lumbar spine bone mineral density on lumbar spine trabecular bone score in Lebanese women. J Clin Densitom. 2014;17:434–5.

    Article  PubMed  Google Scholar 

  27. Bazzocchi A, Ponti F, Diano D, Amadori M, Albisinni U, Battista G, et al. Trabecular bone score in healthy ageing. Br J Radiol. 2015;. doi:10.1259/bjr.20140865.

    Google Scholar 

  28. Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N. Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int. 2013;24:2837–46.

    Article  CAS  PubMed  Google Scholar 

  29. Simonelli C, Leib E, Mossman N, Winzenrieth R, Hans D, McClung M. Creation of an age-adjusted, dual-energy x-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in non-Hispanic US White women. J Clin Densitom. 2014;17:314–9.

    Article  PubMed  Google Scholar 

  30. Iki M, Tamaki J, Sato Y, Winzenrieth R, Fau Kagamimori S, Kagawa Y, et al. Age-related normative values of trabecular bone score (TBS) for Japanese women: the Japanese Population-based Osteoporosis (JPOS) study. Osteoporos Int. 2015;26:245–52.

    Article  CAS  PubMed  Google Scholar 

  31. Sritara C, Thakkinstian A, Ongphiphadhanakul B, Amnuaywattakorn S, Utamakul C, Akrawichien T, et al. Age-adjusted dual X-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in thai females and males. J Clin Densitom. 2015;. doi:10.1016/j.jocd.2015.05.068.

    Google Scholar 

  32. Aloia JF, Mikhail M, Usera G, Dhaliwal R, Islam S. Trabecular bone score (TBS) in postmenopausal African American women. Osteoporos Int. 2015;26(3):1155–61.

    Article  CAS  PubMed  Google Scholar 

  33. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2015;. doi:10.1002/jbmr.2734.

    Google Scholar 

  34. Rabier B, Heraud A, Grand-Lenoir C, Winzenrieth R, Hans D. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone. 2010;46(1):176–81.

    Article  PubMed  Google Scholar 

  35. Leib E, Winzenrieth R, Lamy O, Hans D. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int. 2014;95(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  36. Nassar K, Paternotte S, Kolta S, Fechtenbaum J, Roux C, Briot K. Added value of trabecular bone score over bone mineral density for identification of vertebral fractures in patients with areal bone mineral density in the non-osteoporotic range. Osteoporos Int. 2014;25(1):243–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ayoub ML, Maalouf G, Bachour F, Barakat A, Cortet B, Legroux-Gérot I, et al. DXA-based variables and osteoporotic fractures in Lebanese postmenopausal women. Orthop Traumatol Surg Res. 2014;100(8):855–8.

    Article  PubMed  Google Scholar 

  38. Touvier J, Winzenrieth R, Johansson H, Roux JP, Chaintreuil J, Toumi H, et al. Fracture discrimination by combined bone mineral density (BMD) and microarchitectural texture analysis. Calcif Tissue Int. 2015;96:274–86.

    Article  CAS  PubMed  Google Scholar 

  39. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26:2762–9.

    Article  PubMed  Google Scholar 

  40. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int. 2013;24(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  41. Briot K, Paternotte S, Kolta S, Eastell R, Reid DM, Felsenberg D, et al. Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone. 2013;57:232–6.

    Article  PubMed  Google Scholar 

  42. Iki M, Fujita Y, Tamaki J, Kouda K, Yura A, Sato Y, et al. Trabecular bone score may improve FRAX(R) prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study. Osteoporos Int. 2015;26:1841–8.

    Article  CAS  PubMed  Google Scholar 

  43. McCloskey EV, Oden A, Harvey N, Leslie WD, Hans D, Johansson H, et al. Adjusting fracture probability by trabecular bone score. Calcif Tissue Int. 2015;96:500–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44:734–43.

    Article  PubMed  Google Scholar 

  45. Kanis JA, On behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level. Sheffield: World Health Organization Collaborating Centre for Metabolic Bone Diseases; 2007.

    Google Scholar 

  46. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23:2239–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Leslie WD, Johansson H, Oden A, McCloskey E, Hans D, Kanis JA. Improved risk assessment using lumbar spine trabecular bone score (TBS) to adjust fracture probability: The Manitoba BMD Cohort. J Bone Miner Res. 2015;30 (Suppl 1). http://www.asbmr.org/education/AbstractDetail?aid=26762bba-2c18-4287-b077-e8bcaf118bf6

  48. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27:301–8.

    Article  PubMed  Google Scholar 

  49. Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305(21):2184–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Leslie WD, Aubry-Rozier B, Lamy O, Hans D. Manitoba bone density P. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98(2):602–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhukouskaya VV, Ellen-Vainicher C, Gaudio A, Privitera F, Cairoli E, Ulivieri FM, et al. The utility of lumbar spine trabecular bone score and femoral neck bone mineral density for identifying asymptomatic vertebral fractures in well-compensated type 2 diabetic patients. Osteoporos Int. 2016;27(1):49–56. doi:10.1007/s00198-015-3212-0.

    Article  CAS  PubMed  Google Scholar 

  52. Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM. Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int. 2014;25(7):1969–73.

    Article  CAS  PubMed  Google Scholar 

  53. Paggiosi MA, Peel NF, Eastell R. The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int. 2015;26:1773–80.

    Article  CAS  PubMed  Google Scholar 

  54. Leib ES, Winzenrieth R. Bone status in glucocorticoid-treated men and women. Osteoporos Int. 2016;27(1):39–48. doi:10.1007/s00198-015-3211-1.

    Article  CAS  PubMed  Google Scholar 

  55. Eller-Vainicher C, Filopanti M, Palmieri S, Ulivieri FM, Morelli V, Zhukouskaya VV, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013;169(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  56. Romagnoli E, Cipriani C, Nofroni I, Castro C, Angelozzi M, Scarpiello A, et al. “Trabecular Bone Score” (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone. 2013;53(1):154–9.

    Article  PubMed  Google Scholar 

  57. Baldini M, Ulivieri FM, Forti S, Serafino S, Seghezzi S, Marcon A, et al. Spine bone texture assessed by trabecular bone score (TBS) to evaluate bone health in thalassemia major. Calcif Tissue Int. 2014;95(6):540–6.

    Article  CAS  PubMed  Google Scholar 

  58. Donaldson AA, Feldman HA, O’Donnell JM, Gopalakrishnan G, Gordon CM. Spinal bone texture assessed by trabecular bone score in adolescent girls with anorexia nervosa. J Clin Endocrinol. 2015;100:3436–42.

    Article  CAS  Google Scholar 

  59. Krieg MA, Aubry-Rozier B, Hans D, Leslie WD. Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int. 2013;24(3):1073–8. doi:10.1007/s00198-012-2155-y.

    Article  CAS  PubMed  Google Scholar 

  60. Kalder M, Kyvernitakis I, Albert US, Baier-Ebert M, Hadji P. Effects of zoledronic acid versus placebo on bone mineral density and bone texture analysis assessed by the trabecular bone score in premenopausal women with breast cancer treatment-induced bone loss: results of the ProBONE II substudy. Osteoporos Int. 2015;26(1):353–60.

    Article  CAS  PubMed  Google Scholar 

  61. Petranova T, Sheytanov I, Monov S, Nestorova R, Rashkov R. Denosumab improves bone mineral density and microarchitecture and reduces bone pain in women with osteoporosis with and without glucocorticoid treatment. Biotechnol Biotechnol Equip. 2014;28:1127–37.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Di Gregorio S, Del Rio L, Rodriguez-Tolra J, Bonel E, Garcia M, Winzenrieth R. Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS). Bone. 2015;75:138–43.

    Article  PubMed  Google Scholar 

  63. Bandirali M, Poloni A, Sconfienza L, Messina C, Papini G, Petrini M, et al. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study. Eur Radiol. 2015;25(7):2194–8.

    Article  PubMed  Google Scholar 

  64. Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86.

    Article  PubMed  Google Scholar 

  65. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int. 2013;24:991–8.

    Article  CAS  PubMed  Google Scholar 

  66. Krueger D, Fidler E, Libber J, Aubry-Rozier B, Hans D, Binkley N. Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom. 2014;17:60–5.

    Article  PubMed  Google Scholar 

  67. Winzenrieth R, Dufour R, Pothuaud L, Hans D. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int. 2010;86:104–9.

    Article  CAS  PubMed  Google Scholar 

  68. Iki M, Tamaki J, Kadowaki E, Sato Y, Dongmei N, Winzenrieth R, et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res. 2014;29:399–407.

    Article  PubMed  Google Scholar 

  69. Schousboe JT, Vo T, Taylor BC, Cawthon PM, Schwartz AV, Bauer DC, et al. Prediction of Incident Major Osteoporotic and Hip Fractures by Trabecular Bone Score (TBS) and Prevalent Radiographic Vertebral Fracture in Older Men. J Bone Miner Res. 2015. doi:10.1002/jbmr.2713.

    Google Scholar 

  70. Popp AW, Meer S, Krieg MA, Perrelet R, Hans D, Lippuner K. Bone mineral density (BMD) and vertebral trabecular bone score (TBS) for the identification of elderly women at high risk for fracture: the SEMOF cohort study. Eur Spine J. 2015. doi:10.1007/s00586-015-4035-6.

    PubMed  Google Scholar 

Download references

Author contribution

Both NB and WDL made substantial contributions to the conception and drafting/revising and have approved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Binkley.

Ethics declarations

Conflicts of interest

Neil Binkley has received research grants from Amgen, Eli Lilly, GE Healthcare, Merck and Opko Ireland and serves as a consultant or on advisory boards for Amgen, Astellas, Bristol-Myers Squibb, Eli Lilly and Merck. William D. Leslie (all fees paid to facility) has received speaker honorarium from Amgen, Eli Lilly, and Novartis and research grants from Amgen.

Animal/human studies

This article does not contain any studies with human or animal subject performed by either of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binkley, N., Leslie, W.D. Clinical Application of Spine Trabecular Bone Score (TBS). Clinic Rev Bone Miner Metab 14, 14–25 (2016). https://doi.org/10.1007/s12018-016-9203-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-016-9203-7

Keywords

Navigation