Skip to main content

Advertisement

Log in

Safety of Antidiabetic Therapies on Bone

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis and diabetic disease have reached epidemic proportion and create significant public health concerns. The prevalence of these diseases is alarming and indicates that in the United States, 50% of elderly individuals are osteoporotic and almost 20% of population has either diabetic or prediabetic conditions (Centers for Disease Control and Prevention; http://www.cdc.gov). Osteoporosis and diabetes share many features including genetic predispositions and molecular mechanisms. The linkage between these two chronic diseases, which stems from overlapping molecular controls involved in bone homeostasis and energy metabolism, creates a possibility that certain antidiabetic therapies may affect bone. This concurs with recent findings, indicating that bone status is closely linked to regulation of energy metabolism and insulin sensitivity. Indeed, bone and energy homeostasis is under the control of the same regulatory factors, including insulin, peroxisome proliferator-activated receptor gamma, gastrointestinal hormones such as glucose inhibitory protein and glucagon inhibitory peptide, and bone-derived hormone osteocalcin. These factors and related mechanisms control glucose homeostasis and fatty acid metabolism in fat tissue, pancreas, and intestine, which are pharmacological targets for antidiabetic therapies. The same factors contribute to the bone quality by their effect on bone cell differentiation and bone remodeling process. This implies that bone should be considered as a vital target for therapies that modulate energy metabolism. This review is summarizing available data on the skeletal effects of clinically approved antidiabetic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994;55:273–86.

    Article  CAS  PubMed  Google Scholar 

  2. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–49.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180–92.

    Article  CAS  PubMed  Google Scholar 

  5. Aubin JE. Regulation of osteoblast formation and function. Rev Endocr Metab Disord. 2001;2:81–94.

    Article  CAS  PubMed  Google Scholar 

  6. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation [see comments]. Cell. 1997;89:747–54.

    Article  CAS  PubMed  Google Scholar 

  7. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts [see comments]. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  8. Karsenty G. Minireview: transcriptional control of osteoblast differentiation. Endocrinology. 2001;142:2731–3.

    Article  CAS  PubMed  Google Scholar 

  9. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor [published erratum appears in Cell 1995 Mar 24;80(6):following 957]. Cell. 1994;79:1147–56.

    Article  CAS  PubMed  Google Scholar 

  10. Rosen ED, Spiegelman BM. PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276:37731–4.

    Article  CAS  PubMed  Google Scholar 

  11. Lecka-Czernik B, Gubrij I, Moerman EA, Kajkenova O, Lipschitz DA, Manolagas SC, Jilka RL. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPAR-gamma 2. J Cell Biochem. 1999;74:357–71.

    Article  CAS  PubMed  Google Scholar 

  12. Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord. 2006;7:1–16.

    Article  CAS  PubMed  Google Scholar 

  13. Fulzele K, Riddle RC, Digirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL. Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell. 2010;142:309–19.

    Article  CAS  PubMed  Google Scholar 

  14. Ferron M, Wei J, Yoshizawa T, Del Fattore A, Depinho RA, Teti A, Ducy P, Karsenty G. Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell. 2010;142:296–308.

    Article  CAS  PubMed  Google Scholar 

  15. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    Article  CAS  PubMed  Google Scholar 

  16. Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26:677–80.

    Article  CAS  PubMed  Google Scholar 

  17. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes. 1995;44:775–82.

    Article  CAS  PubMed  Google Scholar 

  18. Reyes-Garcia R, Rozas-Moreno P, Lopez-Gallardo G, Garcia-Martin A, Varsavsky M, Aviles-Perez MD, Munoz-Torres M. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol. 2011.

  19. Garcia-Martin A, Rozas-Moreno P, Reyes-Garcia R, Morales-Santana S, Garcia-Fontana B, Garcia-Salcedo JA, Munoz-Torres M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2011;97:234–41.

    Article  PubMed  Google Scholar 

  20. Lecka-Czernik B. Bone as a target of type 2 diabetes treatment. Curr Opin Investig Drugs. 2009;10:1085–90.

    CAS  PubMed  Google Scholar 

  21. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166:495–505.

    Article  PubMed  Google Scholar 

  22. Yamamoto M, Yamaguchi T, Yamauchi M. Kaji H. Sugimoto T: Diabetic Patients Have an Increased Risk of Vertebral Fractures Independent of Bone Mineral Density or Diabetic Complications. J Bone Miner Res; 2008.

    Google Scholar 

  23. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45–55.

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz AV, Hillier TA, Sellmeyer DE, Resnick HE, Gregg E, Ensrud KE, Schreiner PJ, Margolis KL, Cauley JA, Nevitt MC, Black DM, Cummings SR. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care. 2002;25:1749–54.

    Article  PubMed  Google Scholar 

  25. Melton LJ, Leibson CL, Achenbach SJ, Therneau TM, Khosla S. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008;23:1334–42.

    Article  PubMed  Google Scholar 

  26. Huang S, Kaw M, Harris MT, Ebraheim N, McInerney MF, Najjar SM, Lecka-Czernik B. Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. Bone. 2010;46:1138–45.

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:1013–9.

    Article  CAS  PubMed  Google Scholar 

  28. Vashishth D. Collagen glycation and its role in fracture properties of bone. J Musculoskelet Neuronal Interact. 2005;5:316.

    CAS  PubMed  Google Scholar 

  29. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.

    Article  CAS  PubMed  Google Scholar 

  30. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  PubMed  Google Scholar 

  31. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. Jama. 2007;298:1180–8.

    Article  CAS  PubMed  Google Scholar 

  32. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351:1106–18.

    Article  PubMed  Google Scholar 

  33. Lecka-Czernik B. Bone loss in diabetes: use of anti-diabetic thiazolidinediones and secondary osteoporosis. Current Osteoporosis Reports. 2010;8:178–84.

    Article  PubMed  Google Scholar 

  34. Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, Strotmeyer ES, Resnick HE, Carbone L, Beamer BA, Won Park S, Lane NE, Harris TB, Cummings SR. Thiazolidinedione (TZD) use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006;91:3349–54.

    Article  CAS  PubMed  Google Scholar 

  35. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR. The peroxisome-proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab. 2007;92:1305–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu D, Heise MA, Aftring RP, Viberti G. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2008;31:845–51.

    Article  CAS  PubMed  Google Scholar 

  37. Kanazawa I, Yamaguchi T, Yano S, Yamamoto M, Yamauchi M, Kurioka S, Sugimoto T. Baseline atherosclerosis parameter could assess the risk of bone loss during pioglitazone treatment in type 2 diabetes mellitus. Osteoporos Int. 2010.

  38. Glintborg D, Andersen M, Hagen C, Heickendorff L, Hermann AP. Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2008;93:1696–701.

    Article  CAS  PubMed  Google Scholar 

  39. Gruntmanis U, Fordan S, Ghayee HK, Abdullah SM, See R, Ayers CR, McGuire DK. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone increases bone resorption in women with type 2 diabetes: a randomized, controlled trial. Calcif Tissue Int. 2010;86:343–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95:134–42.

    Article  CAS  PubMed  Google Scholar 

  41. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. Cmaj. 2009;180:32–9.

    PubMed  Google Scholar 

  42. Jones SG, Momin SR, Good MW, Shea TK, Patric K. Distal upper and lower limb fractures associated with thiazolidinedione use. Am J Manag Care. 2009;15:491–6.

    PubMed  Google Scholar 

  43. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:592–600.

    Article  CAS  PubMed  Google Scholar 

  44. Dormuth CR, Carney G, Carleton B, Bassett K, Wright JM. Thiazolidinediones and fractures in men and women. Arch Intern Med. 2009;169:1395–402.

    Article  CAS  PubMed  Google Scholar 

  45. Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008;168:820–5.

    Article  CAS  PubMed  Google Scholar 

  46. Solomon DH, Cadarette SM, Choudhry NK, Canning C, Levin R, Sturmer T. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab. 2009;94:2792–8.

    Article  CAS  PubMed  Google Scholar 

  47. Douglas IJ, Evans SJ, Pocock S, Smeeth L. The risk of fractures associated with thiazolidinediones: a self-controlled case-series study. PLoS Med. 2009;6:e1000154.

    Article  PubMed  Google Scholar 

  48. Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med. 2007;13:1496–503.

    Article  CAS  PubMed  Google Scholar 

  49. Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS. PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev. 2002;16:27–32.

    Article  CAS  PubMed  Google Scholar 

  50. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002;143:2376–84.

    Article  CAS  PubMed  Google Scholar 

  51. Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B. Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology. 2004;145:401–6.

    Article  CAS  PubMed  Google Scholar 

  52. Sottile V, Seuwen K, Kneissel M. Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int. 2004;75:329–37.

    Article  CAS  PubMed  Google Scholar 

  53. Soroceanu MA, Miao D, Bai XY, Su H, Goltzman D, Karaplis AC. Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol. 2004;183:203–16.

    Article  CAS  PubMed  Google Scholar 

  54. Cock TA, Back J, Elefteriou F, Karsenty G, Kastner P, Chan S, Auwerx J. Enhanced bone formation in lipodystrophic PPARgamma(hyp/hyp) mice relocates haematopoiesis to the spleen. EMBO Rep. 2004;5:1007–12.

    Article  CAS  PubMed  Google Scholar 

  55. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005;146:1226–35.

    Article  CAS  PubMed  Google Scholar 

  56. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest. 2004;113:846–55.

    CAS  PubMed  Google Scholar 

  57. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology. 2007;148:2669–80.

    Article  CAS  PubMed  Google Scholar 

  58. Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B. PPARg2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem. 2009;106:232–46.

    Article  CAS  PubMed  Google Scholar 

  59. Lecka-Czernik B, Ackert-Bicknell C, Adamo ML, Marmolejos V, Churchill GA, Shockley KR, Reid IR, Grey A, Rosen CJ. Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology. 2007;148:903–11.

    Article  CAS  PubMed  Google Scholar 

  60. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3:379–89.

    Article  CAS  PubMed  Google Scholar 

  61. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.

    Article  CAS  PubMed  Google Scholar 

  62. Higgins LS, Depaoli AM. Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. Am J Clin Nutr. 2010;91:267S–72S.

    Article  CAS  PubMed  Google Scholar 

  63. Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol. 2010;10:365–76.

    Article  CAS  PubMed  Google Scholar 

  64. Lazarenko OP, Rzonca SO, Suva LJ, Lecka-Czernik B. Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone. 2006;38:74–85.

    Article  CAS  PubMed  Google Scholar 

  65. Grether U, Benardeau A, Benz J, Binggeli A, Blum D, Hilpert H, Kuhn B, Marki HP, Meyer M, Mohr P, Puntener K, Raab S, Ruf A, Schlatter D. Design and biological evaluation of novel, balanced dual PPARalpha/gamma agonists. ChemMedChem. 2009;4:951–6.

    Article  CAS  PubMed  Google Scholar 

  66. Lecka-Czernik B. Aleglitazar, a dual PPARalpha and PPARgamma agonist for the potential oral treatment of type 2 diabetes mellitus. IDrugs. 2010;13:793–801.

    CAS  PubMed  Google Scholar 

  67. Sanwald-Ducray P, Lioger D’ardhuy X, Jamois C, Banken L. Pharmacokinetics, pharmacodynamics, and tolerability of aleglitazar in patients with type 2 diabetes: results from randomized, placebo-controlled clinical study. Clin Pharmacol Ther. 2010;88:197–203.

    Article  CAS  PubMed  Google Scholar 

  68. Hansen BC, Tigno XT, Benardeau A, Meyer M, Sebokova E, Mizrahi J. Aleglitazar, a balanced peroxisome proliferator-activated receptor (PPAR)a/g agonist, exerts potent lipid-modifying effects in a primate model of metabolic syndrome in Type 2 diabetes. Circulation. 2009;120:S469–70.

    Google Scholar 

  69. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028–34.

    Article  CAS  PubMed  Google Scholar 

  70. Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD, Kim DK, Kim SH, Lee CH, Franceschi RT, Choi HS, Koh JT. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone. 2011;48:885–93.

    Article  CAS  PubMed  Google Scholar 

  71. Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem. 2011;112:2902–9.

    Article  CAS  PubMed  Google Scholar 

  72. Sedlinsky C, Molinuevo MS, Cortizo AM, Tolosa MJ, Felice JI, Sbaraglini ML, Schurman L, McCarthy AD. Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats. Eur J Pharmacol. 2011;668:477–85.

    Article  CAS  PubMed  Google Scholar 

  73. Borges JL, Bilezikian JP, Jones-Leone AR, Acusta AP, Ambery PD, Nino AJ, Grosse M, Fitzpatrick LA, Cobitz AR. A randomized, parallel group, double-blind, multicentre study comparing the efficacy and safety of Avandamet (rosiglitazone/metformin) and metformin on long-term glycaemic control and bone mineral density after 80 weeks of treatment in drug-naive type 2 diabetes mellitus patients. Diabetes Obes Metab. 2011;13:1036–46.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86:32–8.

    Article  CAS  PubMed  Google Scholar 

  75. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117:24–32.

    Article  CAS  PubMed  Google Scholar 

  76. Deacon CF. Circulation and degradation of GIP and GLP-1. Horm Metab Res. 2004;36:761–5.

    Article  CAS  PubMed  Google Scholar 

  77. Wesley UV, McGroarty M, Homoyouni A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res. 2005;65:1325–34.

    Article  CAS  PubMed  Google Scholar 

  78. McGuinness C, Wesley UV. Dipeptidyl peptidase IV (DPPIV), a candidate tumor suppressor gene in melanomas is silenced by promoter methylation. Front Biosci. 2008;13:2435–43.

    Article  CAS  PubMed  Google Scholar 

  79. Arscott WT, LaBauve AE, May V, Wesley UV. Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene. 2009;28:479–91.

    Article  CAS  PubMed  Google Scholar 

  80. Clowes JA, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res. 2005;20:1497–506.

    Article  CAS  PubMed  Google Scholar 

  81. Reid IR, Cornish J, Baldock PA. Nutrition-related peptides and bone homeostasis. J Bone Miner Res. 2006;21:495–500.

    Article  CAS  PubMed  Google Scholar 

  82. Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, Holst JJ, Christiansen C. Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone. 2007;40:723–9.

    Article  CAS  PubMed  Google Scholar 

  83. Xie D, Zhong Q, Ding KH, Cheng H, Williams S, Correa D, Bollag WB, Bollag RJ, Insogna K, Troiano N, Coady C, Hamrick M, Isales CM. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone. 2007;40:1352–60.

    Article  CAS  PubMed  Google Scholar 

  84. Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B, Bollag WB, Bollag RJ, Hamrick M, Insogna K, Isales CM. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab. 2007;292:E543–8.

    Article  CAS  PubMed  Google Scholar 

  85. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, Tanaka K, Drucker DJ, Seino Y, Inagaki N. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology. 2008;149:574–9.

    Article  CAS  PubMed  Google Scholar 

  86. Bunck MC, Eliasson B, Corner A, Heine RJ, Shaginian RM, Taskinen MR, Yki-Jarvinen H, Smith U, Diamant M. Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13:374–7.

    Article  CAS  PubMed  Google Scholar 

  87. Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 2011;34:2474–6.

    Article  PubMed  Google Scholar 

  88. Kyle KA, Willett TL, Baggio LL, Drucker DJ, Grynpas MD. Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology. 2011;152:457–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIH/NIA AG028935 and American Diabetes Association’s Amaranth Diabetes Fund 1-09-RA-95.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Lecka-Czernik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecka-Czernik, B. Safety of Antidiabetic Therapies on Bone. Clinic Rev Bone Miner Metab 11, 49–58 (2013). https://doi.org/10.1007/s12018-012-9129-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-012-9129-7

Keywords