Skip to main content

Advertisement

Log in

Genetic Susceptibility in Inflammatory Bowel Disease

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The genetic susceptibility is clearly important in the complex inheritance of inflammatory bowel disease (IBD). Furthermore, the etiologic basis of the relationship between Crohn’s disease (CD) and ulcerative colitis (UC) is as yet unexplained. The strongest evidence supporting the contribution of inherited factors in the pathogenesis of CD and UC comes from concordance rates in twin pairs. The development of a linkage map of the human genome with informative microsatellite markers has enabled hypothesis-free scanning of the human genome for loci associated with the susceptibility to simple monogenic and polygenic diseases. Many susceptibility loci have been implicated in IBD with varying degrees of replication and statistical support. Genetic research in IBD has advanced in understanding the clinical heterogeneity of the disease and has started to tackle the complex interactions between genetic and environmental risk factors in IBD. It is probably to be possible in the future that these genetic markers will find their place in an integrated molecular diagnostic and prognostic approach to patients with IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto-Furusho JK. Clinical epidemiology of ulcerative colitis in Mexico: a single hospital-based study in a 20 year period (1987–2006). J Clin Gastroenterol. 2009;43:221–4.

    Article  PubMed  Google Scholar 

  2. Yamamoto-Furusho JK. Genetic factors associated with the development of inflammatory bowel disease. World J Gastroenterol. 2007;13:5594–7.

    PubMed  CAS  Google Scholar 

  3. Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet. 2005;6:376–88.

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez-Bores L, Fonseca GC, Villeda MA, Yamamoto-Furusho JK. Novel genetic markers in inflammatory bowel disease. World J Gastroenterol. 2007;13:5560–70.

    PubMed  CAS  Google Scholar 

  5. Williams CN, Kocher K, Lander ES, Daly MJ, Rioux JD. Using a genome-wide scan and meta-analysis to identify a novel IBD locus and confirm previously identified IBD loci. Inflamm Bowel Dis. 2002;8:375–81.

    Article  PubMed  Google Scholar 

  6. Barmada MM, Brant SR, Nicolae DL, Achkar JP, Panhuysen CI, Bayless TM, et al. A genome scan in 260 inflammatory bowel disease-affected relative pairs. Inflamm Bowel Dis. 2004;10:15–22.

    Article  PubMed  Google Scholar 

  7. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  PubMed  CAS  Google Scholar 

  8. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  PubMed  CAS  Google Scholar 

  9. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357:1925–8.

    Article  PubMed  CAS  Google Scholar 

  10. Hampe J, Frenzel H, Mirza MM, Croucher PJ, Cuthbert A, Mascheretti S, et al. Evidence for a NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology. 2002;122:867–74.

    Article  PubMed  CAS  Google Scholar 

  11. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70:845–57.

    Article  PubMed  CAS  Google Scholar 

  12. Rosenstiel P, Fantini M, Brautigam K, Kuhbacher T, Waetzig GH, Seegert D, et al. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003;124:1001–9.

    Article  PubMed  CAS  Google Scholar 

  13. Törok HP, Glas J, Lohse P, Folwaczny C. Alterations of the CARD/NOD2 gene and the impact on management and treatment of Crohn’s disease patients. Dig Dis. 2003;21:339–45.

    Article  PubMed  Google Scholar 

  14. Buning C, Genschel J, Buhner S, Kruger S, Kling K, Dignass A, et al. Mutations in the NOD2/CARD15 gene in Crohn’s disease are associated with ileocecal resection and are a risk factor for reoperation. Aliment Pharmacol Ther. 2004;19:1073–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kugathasan S, Collins N, Maresso K, Hoffmann RG, Stephens M, Werlin SL, et al. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn’s disease. Clin Gastroenterol Hepatol. 2004;2:1003–9.

    Article  PubMed  CAS  Google Scholar 

  16. Sun L, Roesler J, Rosen-Wolff A, Winkler U, Koch R, Thurigen A, et al. CARD15 genotype and phenotype analysis in 55 pediatric patients with Crohn’s disease from Saxony, Germany. J Pediatr Gastroenterol Nutr. 2003;37:492–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731–4.

    Article  PubMed  CAS  Google Scholar 

  18. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, et al. 2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut. 2004;53:1658–64.

    Article  PubMed  CAS  Google Scholar 

  19. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology. 2003;124:993–1000.

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe T, Kitani A, Murray PJ, Strober W. NOD2 is a negative regulator of Toll-like receptor 2 mediated T helper type 1 response. Nature Immunol. 2004;5:800–8.

    Article  CAS  Google Scholar 

  21. Cantorna MT, Mahon BD. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med. 2004;229:1136–42.

    CAS  Google Scholar 

  22. Cantorna MT, Munsick C, Bemiss C, Mahon BD. 1, 25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr. 2000;130:2648–52.

    PubMed  CAS  Google Scholar 

  23. Froicu M, Weaver V, Wynn TA, McDowell MA, Welsh JE, Cantorna MT. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol. 2003;17:2386–92.

    Article  PubMed  CAS  Google Scholar 

  24. Morrison NA, Qi JC, Tokita A. Prediction of bone density for Vitamin D receptor alleles. Nature. 1994;367:284–7.

    Article  PubMed  CAS  Google Scholar 

  25. Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation, initiation site of the vitamin D receptor gene is associated with low bone mineral density in post menopausal Mexican-American women. J Bone Miner Res. 1996;11:1850–5.

    Article  PubMed  CAS  Google Scholar 

  26. Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst. 1997;89:166–70.

    Article  PubMed  CAS  Google Scholar 

  27. Simmons JD, Mullighan C, Welsh KI, Jewell DP. Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut. 2000;47:211–4.

    Article  PubMed  CAS  Google Scholar 

  28. Dresner-Pollak R, Ackerman Z, Eliakim R, Karban A, Chowers Y, Fidder HH. The Bsml vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet Test. 2004;8:417–20.

    Article  PubMed  CAS  Google Scholar 

  29. Agnholt J, Dahlerup JF, Buntzen S, Tottrup A, Nielsen SL, Lundorf E. Response, relapse and mucosal immune regulation after infliximab treatment in fistulating Crohn’s disease. Aliment Phermacol Ther. 2003;17:703–10.

    Article  CAS  Google Scholar 

  30. Cantor MJ, Nickerson P, Bernstein CN. The role of cytokine gene polymorphisms in determining disease susceptibility and phenotype in inflammatory bowel disease. Am J Gastroenterol. 2005;100:1134–42.

    Article  PubMed  CAS  Google Scholar 

  31. Leeb SN, Vogl D, Gunckel M, Kiessling S, Falk W, Göke M, et al. Reduced migration of fibroblasts in inflammatory bowel disease: role of inflammatory mediators and focal adhesion kinase. Gastroenterology. 2003;125(5):1341–54.

    Article  PubMed  CAS  Google Scholar 

  32. van Heel DA, Fisher SA, Kirby A, Daly MJ, Rioux JD, Lewis CM, et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet. 2004;13:763–70.

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto-Furusho JK. Inmunogenética de la colitis ulcerosa crónica inespecífica. Rev Invest Clin. 2003;55:705–10.

    PubMed  Google Scholar 

  34. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, et al. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity. 2001;15:83–93.

    Article  PubMed  CAS  Google Scholar 

  35. Seki SS, Sugimura K, Ota M, Matsuzawa J, Katsuyama Y, Ishizuka K, et al. Stratification analysis of MICA triplet repeat polymorphisms and HLA antigens associated with ulcerative colitis in Japanese. Tissue Antigens. 2001;58:71–6.

    Article  PubMed  CAS  Google Scholar 

  36. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993;5:1461–71.

    Article  PubMed  CAS  Google Scholar 

  37. Stokkers PC, Reitsma PH, van Tytgat GN, Deventer SJ. HLA-DR and DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut. 1999;45:395–401.

    Article  PubMed  CAS  Google Scholar 

  38. Yamamoto-Furusho JK, Uscanga LF, Vargas-Alarcón G, Ruiz-Morales J, Higuera L, Cutiño T, et al. Clinical and genetic heterogeneity in Mexican patients with ulcerative colitis. Hum Immunol. 2003;64:119–23.

    Article  PubMed  CAS  Google Scholar 

  39. Murch SH, Lamkin VA, Savage MO, Walker-Smith JA, MacDonald TT. Serum concentrations of TNFa in childhood chronic inflammatory bowel disease. Gut. 1991;32:913–7.

    Article  PubMed  CAS  Google Scholar 

  40. Reimund JM, Wittersheim C, Dumont S, Muller CD, Baumann R, Poindron P, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn`s disease. J Clin Immunol. 1996;16:144–50.

    Article  PubMed  CAS  Google Scholar 

  41. Bouma G, Xia B, Crusius JB, Koutroubakis I, Von Bolmberg BM, Meuwissen SG, et al. Distribution of four polymorphism in the tumour necrosis factor (TNF) genes in patients with inflammatory bowel disease (IBD). Clin Exp Immunol. 1996;103:391–6.

    PubMed  CAS  Google Scholar 

  42. Louis E, Satsangi J, Roussomoustakaki M, Parkes M, Fanning G, Welsh K, et al. Cytokine gene polymorphism in inflammatory bowel disease. Gut. 1996;39:705–10.

    Article  PubMed  CAS  Google Scholar 

  43. Bouma G, Crusius JB, Garcia-Gonzalez MA, Meijer BU, Hellemans HP, Hakvoort RJ, et al. Genetic markers in clinically well defined patients with ulcerative colitis (UC). Clin and Exp Immunol. 1999;115:294–300.

    Article  CAS  Google Scholar 

  44. Yamamoto-Furusho JK, Uscanga LF, Vargas-Alarcón G, Rodríguez-Pérez JM, Zuñiga J, Granados J. Polymorphisms in the promoter region of tumour necrosis factor alpha (TNF-α) and the HLA-DRB1 locus in mexican mestizo patients with ulcerative colitis. Immunol Letters. 2004;95:31–5.

    Article  CAS  Google Scholar 

  45. Yamamoto-Furusho JK, Cantú C, Vargas-Alarcón G, Andrade F, Zúñiga J, Rodríguez J, et al. Complotype SC30 is associated with susceptibility to develop ulcerative colitis in Mexicans. J Clin Gastroenterol. 1998;27:178–9.

    Article  PubMed  CAS  Google Scholar 

  46. Owyang AM, Zaph C, Wilson EH, Guild KJ, McClanahan T, Miller HR, et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med. 2006;203:843–9.

    Article  PubMed  CAS  Google Scholar 

  47. McGovern DP, Van Heel DA, Negoro K, Ahmad T, Jewell DP. Further evidence of IBD5/CARD15(NOD2) epistasis in the susceptibility to ulcerative colitis. Am J Hum Genet. 2003;73:1465–6.

    Article  PubMed  CAS  Google Scholar 

  48. Giallourakis C, Stoll M, Miller K, Hampe J, Lander ES, Daly MJ, et al. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am J Hum Genet. 2003;73:205–11.

    Article  PubMed  CAS  Google Scholar 

  49. Törok HP, Glas J, Tonenchi L, Lohse P, Muller-Myhsok B, Limbersky O, et al. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut. 2005;54:1421–7.

    Article  PubMed  CAS  Google Scholar 

  50. Noble CL, Nimmo ER, Drummond H, Ho GT, Tenesa A, Smith L, et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in Crohn’s disease. Gastroenterology. 2005;129:1854–64.

    Article  PubMed  CAS  Google Scholar 

  51. Russell RK, Drummond HE, Nimmo ER, et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth parameters in early onset inflammatory bowel disease. Gut. 2006;55:1114–23.

    Article  PubMed  CAS  Google Scholar 

  52. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet. 2004;36:471–5.

    Article  PubMed  CAS  Google Scholar 

  53. Newman B, Gu X, Wintle R, Cescon D, Yazdanpanah M, Liu X, et al. A risk haplotype in the solute carrier family 22a4/22A5 gene cluster influence phenotypic expression of Crohn’s disease. Gastroenterology. 2005;128:260–9.

    Article  PubMed  CAS  Google Scholar 

  54. Mirza MM, Fisher SA, King K, Cuthbert AP, Hampe J, Sanderson J, et al. Genetic evidence for interaction of the 5q31 cytokine locus and the CARD15 gene in Crohn disease. Am J Hum Genet. 2003;72:1018–22.

    Article  PubMed  CAS  Google Scholar 

  55. Peeters M, Geypens B, Claus D, Nevens H, Ghoos Y, Verbeke G, et al. Clustering of increased small intestinal permeability in families with Crohn’s disease. Gastroenterology. 1997;113:802–7.

    Article  PubMed  CAS  Google Scholar 

  56. Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA, et al. Genetic variation in DGL5 is associated with inflammatory bowel disease. Nat Genet. 2004;36:476–80.

    Article  PubMed  CAS  Google Scholar 

  57. Daly MJ, Pearce AV, Farwell L, Fisher SA, Latiano A, Prescott NJ, et al. Association of DLG5 R30Q variant with inflammatory bowel disease. Eur J Hum Gen. 2005;13:802–7.

    Google Scholar 

  58. Friedrichs F, Brescianini S, Annese V, Latiano A, Berger K, Kugathasan S, et al. Evidence of transmission ratio distortion of DLG5 R30Q variant in general and implication of an association with Crohn disease in men. Hum Genet. 2006;119:305–11.

    Article  PubMed  Google Scholar 

  59. Bodor M, Kelly EJ, Ho RJ. Characterization of the Human MDR1 Gene. AAPS J. 2005;7:E1–5.

    Article  PubMed  Google Scholar 

  60. Brant SR, Panhuysen CI, Nicolae D, Reddy DM, Bonen DK, Karaliukas R, et al. The MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet. 2003;73:1282–92.

    Article  PubMed  CAS  Google Scholar 

  61. Glas J, Törok HP, Schiemann U, Folwaczny C. MDR1 gene polymorphism in ulcerative colitis. Gastroenterology. 2004;126:367–71.

    Article  PubMed  Google Scholar 

  62. Ho GT, Nimmo ER, Tenesa A, Fennell J, Drummond H, Mowat C, et al. Gastrointestinal. Allelic variations of the multidrug resistance gene determine susceptibility and disease behavior in ulcerative colitis. Gastroenterology. 2005;128:288–96.

    Article  PubMed  CAS  Google Scholar 

  63. Wang D, Sadee W. Searching for polymorphisms that affect gene expression and mRNA processing: example ABCB1 (MDR1). AAPS J. 2006;7:E515–20.

    Article  Google Scholar 

  64. Farrell RJ, Kelleher D. Glucocorticoid resistance in inflammatory bowel disease. J Endocrinol. 2003;178:339–46.

    Article  PubMed  CAS  Google Scholar 

  65. Cucchiara S, Latiano A, Palmeiri O, Berni Canani R, D′Incá R, Guariso G, et al. Polymorphisms of tumor necrosis factor-α but not MDR1 influence response to medical therapy in pediatric-onset inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44:171–9.

    Article  PubMed  CAS  Google Scholar 

  66. McAlindon ME, Mahida YR. Pro-inflammatory cytokines in inflammatory bowel disease. Aliment Pharmacol Ther. 1996;10(Suppl 2):72–4.

    PubMed  Google Scholar 

  67. Mahida YR, Kurlac L, Gallagher A, Hawkey CJ. High circulating concentrations of interleukin-6 in active Crohn’s disease but not ulcerative colitis. Gut. 1991;32:1531–4.

    Article  PubMed  CAS  Google Scholar 

  68. Ma Y, Ohmen JD, Li Z, Bentley LG, McElree C, Pressman S, et al. A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflamm Bowel Dis. 1999;5:271–8.

    Article  PubMed  CAS  Google Scholar 

  69. Low JH, Williams FA, Yang X, Cullen S, Colley J, Ling KL, et al. Inflammatory bowel disease is linked to 19p13 and associated with ICAM-1. Inflamm Bowel Dis. 2004;10:173–81.

    Article  PubMed  Google Scholar 

  70. Marek A, Brodzicki J, Liberek A, Korzon M. TGF-beta (transforming growth factor-beta) in chronic inflammatory conditions—a new diagnostic and prognostic marker? Med Sci Monit. 2002;8:RA145–51.

    PubMed  CAS  Google Scholar 

  71. Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol. 2001;166:7282–9.

    PubMed  CAS  Google Scholar 

  72. Lee YJ, Han Y, Lu HT, Nguyen V, Qin H, Howe PH, et al. TGF-beta suppresses IFN-gamma induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression. J Immunol. 1997;158:2065–75.

    PubMed  CAS  Google Scholar 

  73. McKaig BC, Hughes K, Tighe PJ, Mahida YR. Differential expression of TGF-beta isoforms by normal and inflammatory bowel disease intestinal myofibroblasts. Am J Physiol Cell Physiol. 2002;282:C172–82.

    PubMed  CAS  Google Scholar 

  74. Fell JM, Paintin M, Arnaud-Battandier F, Beattie RM, Hollis A, Kitching P, et al. Mucosal healing and a fall in mucosal pro-inflammatory cytokine mRNA induced by a specific oral polymeric diet in paediatric Crohn’s disease. Aliment Pharmacol Ther. 2000;14:281–9.

    Article  PubMed  CAS  Google Scholar 

  75. Brant SR, Shugart YY. Inflammatory bowel disease gene hunting by linkage analysis: rationale, methodology, and present status on the field. Inflamm Bowel Dis. 2004;10:300–11.

    Article  PubMed  Google Scholar 

  76. Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K, et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet. 1996;14:199–202.

    Article  PubMed  CAS  Google Scholar 

  77. Rector A, Vermeire S, Thoelen I, Keyaerts E, Struyf F, Vlietinck R, et al. Analysis of the CC chemokine receptor 5 (CCR5) delta-32 polymorphism in inflammatory bowel disease. Hum Genet. 2001;108:190–3.

    Article  PubMed  CAS  Google Scholar 

  78. Török HP, Glas J, Endres I, Tonenchi L, Teshome MY, Wetzke M, et al. Epistasis between Toll-like receptor 9 polymorphisms and variants in NOD2 and IL23R modulates susceptibility to Crohn’s disease. Am J Gastroenterol. 2009;104:1734–6.

    Article  CAS  Google Scholar 

  79. Saruta M, Targan SR, Mei L, Ippoliti AF, Taylor KD, Rotter JI. High-frequency haplotypes in the X chromosome locus TLR8 are associated with both CD and UC in females. Inflamm Bowel Dis. 2009;15(3):321–7.

    Article  PubMed  Google Scholar 

  80. Kopp EB, Medzhitov R. The Toll-receptor family and control of innate-immunity. Curr Opin Immunol. 1999;11:13–8.

    Article  PubMed  CAS  Google Scholar 

  81. Ouburg S, Mallant-Hent R, Crusius JB, van Bodegraven AA, Mulder CJ, Linskens R, et al. The toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn’s disease without a major role for the Saccharomyces cerevisiae mannan-LBP-CD14-TLR4 pathway. Gut. 2005;54:439–40.

    PubMed  CAS  Google Scholar 

  82. Törok HP, Glas J, Tonenchi L, Mussack T, Folwaczny C. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol. 2004;112:85–91.

    Article  PubMed  CAS  Google Scholar 

  83. Fort MM, Mozaffarian A, Stover AG, Correia Jda S, Johnson DA, Crane RT, et al. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J Immunol. 2005;15(174):6416–23.

    Google Scholar 

  84. Pierik M, Joossens S, Van Oteen K, Van Schuereek N, Vlietinck R, Rutgeerts P, et al. Toll-like receptor-1, -2 and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis. 2006;12:1–8.

    Article  PubMed  Google Scholar 

  85. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)–4 Asp299Gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53:987–92.

    Article  PubMed  CAS  Google Scholar 

  86. Gazouli M, Mantzaris G, Kotsinas A, Zacharatos P, Papalambros E, Archimandritis A, et al. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol. 2005;11:681–5.

    PubMed  CAS  Google Scholar 

  87. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274:17406–9.

    Article  PubMed  CAS  Google Scholar 

  88. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.

    Article  PubMed  CAS  Google Scholar 

  89. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol. 1999;163:1–5.

    PubMed  CAS  Google Scholar 

  90. Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem. 1999;274:33419–25.

    Article  PubMed  CAS  Google Scholar 

  91. Opitz B, Schroder NW, Spreitzer I, Michelsen KS, Kirschning CJ, Hallatschek W, et al. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem. 2001;276:22041–7.

    Article  PubMed  CAS  Google Scholar 

  92. Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J, et al. Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol. 2001;166:4074–82.

    PubMed  CAS  Google Scholar 

  93. Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, et al. Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol. 2001;69:1036–44.

    PubMed  CAS  Google Scholar 

  94. Ozinsky A, Smith KD, Hume D, Underhill DM. Co-operative induction of pro-inflammatory signaling by Toll-like receptors. J Endotoxin Res. 2000;6:393–6.

    PubMed  CAS  Google Scholar 

  95. Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, et al. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol. 2001;66:15–9.

    Google Scholar 

  96. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–103.

    Article  PubMed  CAS  Google Scholar 

  97. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, et al. Bacterial flagellin is a dominant antigen in Crohn disease. Infect Immun. 2004;113:1296–306.

    CAS  Google Scholar 

  98. Netea MG, Ferwerda G, de Jong DJ, Jansen T, Jacobs L, Kramer M, et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J Immunol. 2005;174:6518–23.

    PubMed  CAS  Google Scholar 

  99. Gerwitz AT, Vijay-Kumar M, Swanson E, Duerr RH, Brant SR, Cho J. Common dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and provides protection from Crohn’s disease. Gastroenterology. 2005;128:A55.

    Google Scholar 

  100. McGovern DP, Hysi P, Ahmad T, van Heel DA, Moffatt MF, Carey A, et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet. 2005;14:1245–50.

    Article  PubMed  CAS  Google Scholar 

  101. Iwasaki A, Kelsall BL. Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3 alpha, MIP-3-beta, and secondary lymphoid organ chemokine. J Exp Med. 2000;191:1381–94.

    Article  PubMed  CAS  Google Scholar 

  102. Puleston J, Cooper M, Murch S, Bid K, Makh S, Ashwood P, et al. A distinct subset of chemokines dominates the mucosal chemokine response in inflammatory bowel disease. Aliment Pharmacol Ther. 2005;21:109–20.

    Article  PubMed  CAS  Google Scholar 

  103. Lee HJ, Choi SC, Lee MH, Oh HM, Choi EY, Choi EJ, et al. Increased expression of MIP-3alpha/CCL20 in peripheral blood mononuclear cells from patients with ulcerative colitis and its down-regulation by sulfasalazine and glucocorticoid treatment. Inflamm Bowel Dis. 2005;11:1070–9.

    Article  PubMed  Google Scholar 

  104. Klein W, Tromm A, Griga T, Fricke H, Folwaczny C, Hocke M, et al. A polymorphism in the IL11 gene is associated with ulcerative colitis. Genes Immun. 2002;3:494–6.

    Article  PubMed  CAS  Google Scholar 

  105. Takagawa T, Tamura K, Takeda N, Tomita T, Ohda Y, Fukunaga K, et al. Association between IL-18 gene promoter polymorphisms and inflammatory bowel disease in a Japanese population. Inflamm Bowel Dis. 2005;11:1038–43.

    Article  PubMed  CAS  Google Scholar 

  106. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest. 1996;98:1010–20.

    Article  PubMed  CAS  Google Scholar 

  107. Davidson NJ, Hudak SA, Lesley RE, Menon S, Leach MW, Rennick DM. IL-12, but not IFN-gamma, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J Immunol. 1998;161:3143–9.

    PubMed  CAS  Google Scholar 

  108. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182:1281–90.

    Article  PubMed  CAS  Google Scholar 

  109. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.

    Article  PubMed  CAS  Google Scholar 

  110. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–7.

    Article  PubMed  CAS  Google Scholar 

  111. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

    Article  PubMed  CAS  Google Scholar 

  112. Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S. Interleukin-17. Int Rev Immunol. 1998;16:541–51.

    Article  PubMed  CAS  Google Scholar 

  113. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.

    Article  PubMed  CAS  Google Scholar 

  114. Trinchieri G. Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol. 1998;16:365–96.

    Article  PubMed  CAS  Google Scholar 

  115. Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D, Bechthold O, et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest. 2003;112:693–706.

    PubMed  CAS  Google Scholar 

  116. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310–6.

    Article  PubMed  CAS  Google Scholar 

  117. Festen EA, Goyette P, Scott R, Annese V, Zhernakova A, Lian J, et al. Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut. 2009;58:799–804.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús K. Yamamoto-Furusho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto-Furusho, J.K. Genetic Susceptibility in Inflammatory Bowel Disease. Clinic Rev Bone Miner Metab 8, 149–159 (2010). https://doi.org/10.1007/s12018-009-9068-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-009-9068-0

Keywords