Skip to main content

Advertisement

Log in

Genetics and Treatment Response in Parkinson’s Disease: An Update on Pharmacogenetic Studies

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acuña, G., Foernzler, D., Leong, D., Rabbia, M., Smit, R., Dorflinger, E., et al. (2002). Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. The Pharmacogenomics Journal, 2(5), 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Agúndez, J. A., García-Martín, E., Alonso-Navarro, H., & Jiménez-Jiménez, F. J. (2013). Anti-Parkinson’s disease drugs and pharmacogenetic considerations. Expert Opinion on Drug Metabolism & Toxicology, 9(7), 859–874.

    Article  CAS  Google Scholar 

  • Ahlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement Disorders Journal, 16(3), 448–458.

    Article  CAS  Google Scholar 

  • Alonso-Navarro, H., Jimenez-Jimenez, F. J., Garcia-Martin, E., & Agundez, J. A. (2014). Genomic and pharmacogenomic biomarkers of Parkinson’s disease. Current Drug Metabolism, 15(2), 129–181.

    Article  CAS  PubMed  Google Scholar 

  • Altmann, V., Schumacher-Schuh, A. F., Rieck, M., Callegari-Jacques, S. M., Rieder, C. R., & Hutz, M. H. (2016). Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson’s disease. Pharmacogenomics, 17(5), 481–488.

    Article  CAS  PubMed  Google Scholar 

  • Arbouw, M. E., Movig, K. L., Egberts, T. C., Poels, P. J., van Vugt, J. P., Wessels, J. A., et al. (2009). Clinical and pharmacogenetic determinants for the discontinuation of non-ergoline dopamine agonists in Parkinson’s disease. European Journal of Clinical Pharmacology, 65(12), 1245–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbouw, M. E., Movig, K. L., Guchelaar, H. J., Poels, P. J., van Vugt, J. P., Neef, C., et al. (2008). Discontinuation of ropinirole and pramipexole in patients with Parkinson’s disease: Clinical practice versus clinical trials. European Journal of Clinical Pharmacology, 64(10), 1021–1026.

    Article  CAS  PubMed  Google Scholar 

  • Baik, J. H. (2013). Dopamine signaling in food addiction: Role of dopamine D2 receptors. BMB Reports, 46(11), 519–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker, M. L., Visser, L. E., van Schaik, R. H., Hofman, A., Uitterlinden, A. G., & Stricker, B. H. (2011). OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics, 12(1), 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Beinfeld, M. C. (2001). An introduction to neuronal cholecystokinin. Peptides, 22(8), 1197–1200.

    Article  CAS  PubMed  Google Scholar 

  • Berry, M. D., Juorio, A. V., Li, X. M., & Boulton, A. A. (1996). Aromatic l-amino acid decarboxylase: A neglected and misunderstood enzyme. Neurochemical Research, 21(9), 1075–1087.

    Article  CAS  PubMed  Google Scholar 

  • Besch, R., Giovannangeli, C., & Degitz, K. (2004). Triplex-forming oligonucleotides—Sequence-specific DNA ligands as tools for gene inhibition and for modulation of DNA-associated functions. Current Drug Targets, 5(8), 691–703.

    Article  CAS  PubMed  Google Scholar 

  • Bezard, E., Brotchie, J. M., & Gross, C. E. (2001). Pathophysiology of levodopa induced dyskinesia: Potential for new therapies. Nature Reviews Neuroscience, 2(8), 577–588.

    Article  CAS  PubMed  Google Scholar 

  • Białecka, M., Droździk, M., Kłodowska-Duda, G., Honczarenko, K., Gawrońska-Szklarz, B., Opala, G., et al. (2004). The effect of monoamine oxidase B (MAOB) and catechol-Omethyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurologica Scandinavica, 110(4), 260–266.

    Article  PubMed  CAS  Google Scholar 

  • Bialecka, M., Klodowska-Duda, G., Honczarenko, K., Gawrońska-Szklarz, B., Opala, G., Safranow, K., et al. (2007). Polymorphisms of catechol-O-methyltransferase (COMT), monoamine oxidase B (MAOB), N-acetyltransferase 2 (NAT2) and cytochrome P450 2D6 (CYP2D6) gene in patients with early onset of Parkinson’s disease. Parkinsonism & Related Disorders, 13(4), 224–229.

    Article  CAS  Google Scholar 

  • Bialecka, M., Kurzawski, M., Klodowska-Duda, G., Opala, G., Tan, E. K., & Drozdzik, M. (2008). The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenetics and Genomics, 18(9), 815–821.

    Article  CAS  PubMed  Google Scholar 

  • Bond, C., LaForge, K. S., Tian, M., Melia, D., Zhang, S., Borg, L., et al. (1998). Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: Possible implications for opiate addiction. Proceedings of the National Academy of Sciences USA, 95(16), 9608–9613.

    Article  CAS  Google Scholar 

  • Borges, N. (2005). Tolcapone in Parkinson’s disease: Liver toxicity and clinical efficacy. Expert Opinion in Drug Safety, 4(1), 69–73.

    Article  CAS  Google Scholar 

  • Børglum, A. D., Kirov, G., Craddock, N., Mors, O., Muir, W., Murray, V., et al. (2003). Possible parent-of-origin effect of Dopa decarboxylase in susceptibility to bipolar affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 117B(1), 18–22.

    Article  Google Scholar 

  • Brotchie, J. M., Lee, J., & Venderova, K. (2005). Levodopa-induced dyskinesia in Parkinson’s disease. Journal of Neural Transmission, 112(3), 359–391.

    Article  CAS  PubMed  Google Scholar 

  • Camicioli, R., Rajput, A., Rajput, M., Reece, C., Payami, H., & Hao, C. (2005). Apolipoprotein E epsilon4 and catechol-O-methyltransferase alleles in autopsyproven Parkinson’s disease: Relationship to dementia and hallucinations. Movement Disorders, 20(8), 989–994.

    Article  PubMed  Google Scholar 

  • Cargnin, S., Jommi, C., Canonico, P. L., Genazzani, A. A., & Terrazzino, S. (2014). Diagnostic accuracy of HLA-B*57:01 screening for the prediction of abacavir hypersensitivity and clinical utility of the test: A meta-analytic review. Pharmacogenomics, 15(7), 963–976.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, J., Korczyn, A. D., Karussis, D. M., & Michaelson, D. M. (2001). The effects of APOE genotype on age at onset and progression of neurodegenerative diseases. Neurology, 57(8), 1482–1485.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri, R., & Schapira, A. (2009). Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. The Lancet Neurology, 8(5), 464–474.

    Article  CAS  PubMed  Google Scholar 

  • Cheshire, P., Bertram, K., Ling, H., O’Sullivan, S. S., Halliday, G., McLean, C., et al. (2014). Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegenerative Disease, 13(1), 24–28.

    CAS  Google Scholar 

  • Clarke, C. E., & Guttman, M. (2002). Dopamine agonist monotherapy in Parkinson’s disease. Lancet, 360(9347), 1767–1769.

    Article  CAS  PubMed  Google Scholar 

  • Conde, L., Vaquerizas, J. M., Dopazo, H., Arbiza, L., Reumers, J., Rousseau, F., et al. (2006). PupaSuite: Finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Research, 34(Web Server issue), W621-5.

    PubMed  Google Scholar 

  • Contin, M., Martinelli, P., Mochi, M., Riva, R., Albani, F., & Baruzzi, A. (2005). Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic–pharmacodynamic pattern in patients with Parkinson’s disease. Movement Disorders, 20(6), 734–739.

    Article  PubMed  Google Scholar 

  • Corvol, J. C., Bonnet, C., Charbonnier-Beaupel, F., Bonnet, A. M., Fiévet, M. H., Bellanger, A., et al. (2011). The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: A randomized crossover clinical trial. Annals of Neurology, 69(1), 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, J. L. (1991). Behavioral complications of drug treatment of Parkinson’s disease. Journal of the American Geriatrics Society, 39(7), 708–716.

    Article  CAS  PubMed  Google Scholar 

  • Dardou, D., Dassesse, D., Cuvelier, L., Deprez, T., De Ryck, M., & Schiffmann, S. N. (2011). Distribution of SV2C mRNA and protein expression in the mouse brain with a particular emphasis on the basal ganglia system. Brain Research, 1367, 130–145.

    Article  CAS  PubMed  Google Scholar 

  • De Lau, L., & Breteler, M. (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5(6), 525–535.

    Article  PubMed  Google Scholar 

  • De Lau, L. M., Verbaan, D., Marinus, J., Heutink, P., & van Hilten, J. J. (2012). Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Movement Disorders, 27(1), 132–135.

    Article  PubMed  CAS  Google Scholar 

  • De Luca, V., Annesi, G., De Marco, E. V., de Bartolomeis, A., Nicoletti, G., Pugliese, P., et al. (2009). HOMER1 promoter analysis in Parkinson’s disease: Association study with psychotic symptoms. Neuropsychobiology, 59(4), 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Devos, D., Lejeune, S., Cormier-Dequaire, F., Tahiri, K., Charbonnier-Beaupel, F., Rouaix, N., et al. (2014). Dopa-decarboxylase gene polymorphisms affect the motor response to L-dopa in Parkinson’s disease. Parkinsonism & Related Disorders, 20(2), 170–175.

    Article  Google Scholar 

  • Džoljić, E., Novaković, I., Krajinovic, M., Grbatinić, I., & Kostić, V. (2015). Pharmacogenetics of drug response in Parkinson’s disease. The International Journal of Neuroscience, 125(9), 635–644.

    Article  PubMed  CAS  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., et al. (2004). Levodopa and the progression of Parkinson’s disease. The New England Journal of Medicine, 351(24), 2498–2508.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, B., Chapman, J., & Korczyn, A. D. (2006). Apolipoprotein epsilon4 advances appearance of psychosis in patients with Parkinson’s disease. Acta Neurologica Scandinavica, 113(1), 14–17.

    Article  CAS  PubMed  Google Scholar 

  • Fénelon, G., & Alves, G. (2010). Epidemiology of psychosis in Parkinson’s disease. Journal of the Neurological Sciences, 289(1–2), 12–17.

    Article  PubMed  Google Scholar 

  • Ferrari, M., Martignoni, E., Blandini, F., Riboldazzi, G., Bono, G., Marino, F., et al. (2012). Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson’s disease patients. European Journal of Clinical Pharmacology, 68(11), 1493–1499.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, A., Croft-Baker, J., Davis, M., Purcell, P., & McLean, A. J. (2002). Entacapone-induced hepatotoxicity and hepatic dysfunction. Movement Disorders, 17(6), 1362–1365.

    Article  PubMed  Google Scholar 

  • Foltynie, T., Cheeran, B., Williams-Gray, C. H., Edwards, M. J., Schneider, S. A., Weinberger, D., et al. (2009). BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 80(2), 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Fox, S. H., Katzenschlager, R., Lim, S. Y., Ravina, B., Seppi, K., Coelho, M., et al. (2011). The movement disorder society evidence-based medicine review update: Treatments for the motor symptoms of Parkinson’s disease. Movement Disorders, 26(Suppl 3), S2–S41.

    Article  PubMed  Google Scholar 

  • Fox, S. H., & Lang, A. E. (2008). Levodopa-related motor complications—Phenomenology. Movement Disorders, 23(Suppl. 3), S509–S514.

    Article  PubMed  Google Scholar 

  • Frauscher, B., Högl, B., Maret, S., Wolf, E., Brandauer, E., Wenning, G. K., et al. (2004). Association of daytime sleepiness with COMT polymorphism in patients with Parkinson disease: A pilot study. Sleep, 27(4), 733–736.

    Article  PubMed  Google Scholar 

  • Fujii, C., Harada, S., Ohkoshi, N., Hayashi, A., Yoshizawa, K., Ishizuka, C., et al. (1999). Association between polymorphism of the cholecystokinin gene and idiopathic Parkinson’s disease. Clinical Genetics, 56(5), 394–399.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Borreguero, D., Schwarz, C., Larrosa, O., de la Llave, Y., & Garcia de Yébenes, J. (2003). L-DOPA-induced excessive daytime sleepiness in PD: A placebo-controlled case with MSLT assessment. Neurology, 61(7), 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz, P. J., Martinez Castrillo, J. C., Alonso-Canovas, A., Herranz Barcenas, A., Vela, L., Sanchez Alonso, P., et al. (2014). Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: A multicentre study. Journal of Neurology, Neurosurgery and Psychiatry, 85(8), 840–844.

    Article  PubMed  Google Scholar 

  • Goetz, C. G., Burke, P. F., Leurgans, S., Berry-Kravis, E., Blasucci, L. M., Raman, R., et al. (2001). Genetic variation analysis in Parkinson disease patients with and without hallucinations: Case–control study. Archives of Neurology, 58(2), 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Goldman, J. G., Goetz, C. G., Berry-Kravis, E., Leurgans, S., & Zhou, L. (2004). Genetic polymorphisms in Parkinson disease subjects with and without hallucinations: An analysis of the cholecystokinin system. Archives Neurology, 61(8), 1280–1284.

    Article  Google Scholar 

  • Goldman, J. G., Marr, D., Zhou, L., Ouyang, B., Leurgans, S. E., Berry-Kravis, E., et al. (2011). Racial differences may influence the role of cholecystokinin polymorphisms in Parkinson’s disease hallucinations. Movement Disorders, 26(9), 1781–1782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudreau, J. L., Maraganore, D. M., Farrer, M. J., Lesnick, T. G., Singleton, A. B., Bower, J. H., et al. (2002). Case-control study of dopamine transporter-1, monoamine oxidase-B, and catechol-O-methyl transferase polymorphisms in Parkinson’s disease. Movement Disorders, 17(6), 1305–1311.

    Article  PubMed  Google Scholar 

  • Guay, D. R. (2006). Rasagiline (TVP-1012): A new selective monoamine oxidase inhibitor for Parkinson’s disease. The American Journal of Geriatric Pharmacotherapy, 4, 330–346.

    Article  CAS  PubMed  Google Scholar 

  • Guerini, F. R., Beghi, E., Riboldazzi, G., Zangaglia, R., Pianezzola, C., Bono, G., et al. (2009). BDNF Val66Met polymorphism is associated with cognitive impairment in Italian patients with Parkinson’s disease. European Journal of Neurology, 16(11), 1240–1245.

    Article  CAS  PubMed  Google Scholar 

  • Guntaka, R. V., Varma, B. R., & Weber, K. T. (2003). Triplex-forming oligonucleotides as modulators of gene expression. The International Journal of Biochemistry & Cell Biology, 35(1), 22–31.

    Article  CAS  Google Scholar 

  • Hardoff, R., Sula, M., Tamir, A., Soil, A., Front, A., Badarna, S., et al. (2001). Gastric emptying time and gastric motility in patients with Parkinson’s disease. Movement Disorder, 16(6), 1041–1047.

    Article  CAS  Google Scholar 

  • Harhangi, B. S., de Rijk, N. C., Van Duijn, C. M., Van Broeckhoven, C., Hofman, A., & Breteler, M. M. B. (2000). APOE and the risk of PD with or without dementia in a population based study. Neurology, 54(6), 1272–1276.

    Article  CAS  PubMed  Google Scholar 

  • Hill-Burns, E. M., Singh, N., Ganguly, P., Hamza, T. H., Montimurro, J., Kay, D. M., et al. (2013). A genetic basis for the variable effect of smoking/nicotine on Parkinson’s disease. Pharmacogenomics Journal, 13(6), 530–537.

    Article  CAS  PubMed  Google Scholar 

  • Högl, B., Seppi, K., Brandauer, E., Glatzlm, S., Frauscher, B., Niedermüller, U., et al. (2003). Increased daytime sleepiness in Parkinson’s disease: A questionnaire survey. Movement Disorders, 8(3), 319–323.

    Article  Google Scholar 

  • Hungs, M., & Mignot, E. (2001). Hypocretin/orexin, sleep and narcolepsy. BioEssays, 23(5), 397–408.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, S. A., Loonen, A. J., Pechlivanoglou, P., Freidin, M. B., Al Hadithy, A. F., Rudikov, E. V., et al. (2012). NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Translational. Psychiatry, 2, e67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Jeanneteau, F., Funalot, B., Jankovic, J., Deng, H., Lagarde, J. P., Lucotte, G., et al. (2006). A functional variant of the dopamine D (3) receptor is associated with risk and age-at-onset of essential tremor. Proceedings of the National Academy of Sciences USA, 103(28), 10753–10758.

    Article  CAS  Google Scholar 

  • Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E., & Agúndez, J. A. (2016). Advances in understanding genomic markers and pharmacogenetics of Parkinson’s disease. Expert Opinion on Drug Metabolism & Toxicology, 12(4), 433–448.

    Article  CAS  Google Scholar 

  • Kaiser, R., Hofer, A., Grapengiesser, A., Gasser, T., Kupsch, A., Roots, I., et al. (2003). L-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology, 60(11), 1750–1755.

    Article  CAS  PubMed  Google Scholar 

  • Kalinderi, K., Fidani, L., Katsarou, Z., & Bostantjopoulou, S. (2011). Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. International Journal of Clinical Practice, 65(12), 1289–1294.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, N., Vituri, A., Korczyn, A. D., Cohen, O. S., Inzelberg, R., Yahalom, G., et al. (2014). Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease. Journal of Molecular Neuroscience, 53(2), 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz, N. (2005). Idiosyncratic drug hepatotoxicity. Nature Reviews Drug Discovery, 4(6), 489–499.

    Article  CAS  PubMed  Google Scholar 

  • Kempster, P. A., O’Sullivan, S. S., Holton, J. L., Revesz, T., & Lees, A. J. (2010). Relationships between age and late progression of Parkinson’s disease: A clinico-pathological study. Brain, 133(Pt 6), 1755–1762.

    Article  PubMed  Google Scholar 

  • Kilduff, T. S., & Peyron, C. (2000). The hypocretin/orexin ligand-receptor system: Implications for sleep and sleep disorders. Trends in Neurosciences, 23(8), 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Koepsell, H., Lips, K., & Volk, C. (2007). Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharmaceutical Research, 24(7), 1227–1251.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy, S., Rajan, R., Banerjee, M., Kumar, H., Sarma, G., Krishnan, S., et al. (2016). Dopamine D3 receptor Ser9Gly variant is associated with impulse control disorders in Parkinson’s disease patients. Parkinsonism & Related Disorders, 30, 13–17.

    Article  Google Scholar 

  • Kurzawski, M., Białecka, M., & Droździk, M. (2015). Pharmacogenetic considerations in the treatment of Parkinson’s disease. Neurodegenerative Disease Management, 5(1), 27–35.

    Article  PubMed  Google Scholar 

  • Labandeira-Garcia, J. L., Rodriguez-Pallares, J., Dominguez- Meijide, A., Valenzuela, R., Villar-Cheda, B., et al. (2013). Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Movement Disorders, 28(10), 1337–1342.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. Y., Cho, J., Lee, E. K., Park, S. S., & Jeon, B. S. (2011). Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Movement Disorders, 26(1), 73–79.

    Article  PubMed  Google Scholar 

  • Lee, M. S., Lyoo, C. H., Ulmanen, I., Syvänen, A. C., & Rinne, J. O. (2001). Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson’s disease. Neuroscience Letters, 298(2), 131–134.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. J., Scott, W. K., Hedges, D. J., Zhang, F., Gaskell, P. C., Nance, M. A., et al. (2002). Age at onset in two common neurodegenerative diseases is genetically controlled. American Journal of Human Genetics, 70(4), 985–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J. J., Yueh, K. C., Lin, S. Z., Harn, H. J., & Liu, J. T. (2007). Genetic polymorphism of the angiotensin converting enzyme and L-dopa-induced adverse effects in Parkinson’s disease. Journal of the Neurological Science, 252(2), 130–134.

    Article  CAS  Google Scholar 

  • Linazasoro, G. (2005). New ideas on the origin of L-dopa-induced dyskinesias: Age, genes and neural plasticity. Trends in Pharmacological Science, 26(8), 391–397.

    Article  CAS  Google Scholar 

  • Liu, Y. Z., Tang, B. S., Yan, X. X., Liu, J., Ouyang, D. S., Nie, L. N., et al. (2009). Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. European Journal of Clinical Pharmacology, 65(7), 679–683.

    Article  CAS  PubMed  Google Scholar 

  • Luo, P., Li, X., Fei, Z., & Poon, W. (2012). Scaffold protein Homer 1: Implications for neurological diseases. Neurochemistry International, 61(5), 731–738.

    Article  CAS  PubMed  Google Scholar 

  • Makoff, A. J., Graham, J. M., Arranz, M. J., Forsyth, J., Li, T., Aitchison, K. J., et al. (2000). Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson’s disease. Pharmacogenetics, 10(1), 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Martignoni, E., Cosentino, M., Ferrari, M., Porta, G., Mattarucchi, E., Marino, F., et al. (2005). Two patients with COMT inhibitor-induced hepatic dysfunction and UGT1A9 genetic polymorphism. Neurology, 65(11), 1820–1822.

    Article  CAS  PubMed  Google Scholar 

  • Masellis, M., Collinson, S., Freeman, N., Tampakeras, M., Levy, J., Tchelet, A., et al. (2016). Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson’s disease: A pharmacogenetic study. Brain, 139(Pt 7), 2050–2062.

    Article  PubMed  Google Scholar 

  • Mhyre, T. R., Boyd, J. T., Hamill, R. W., & Maguire-Zeiss, K. A. (2012). Parkinson’s disease. SubCellular Biochemistry, 65, 389–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina, M., Ishiwata, K., Naganawa, M., Kimura, Y., Kitamura, S., & Suzuki, M. (2011). Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of Parkinson’s disease patients. PLoS ONE, 6(2), e17338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momose, Y., Murata, M., Kobayashi, K., Tachikawa, M., Nakabayashi, Y., & Kanazawa, I. (2002). Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Annals of Neurology, 51(1), 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Moore, T. J., Glenmullen, J., & Mattison, D. R. (2014). Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Internal Medicine, 174(12), 1930–1933.

    Article  PubMed  Google Scholar 

  • Moreau, C., Meguig, S., Corvol, J. C., Labreuche, J., Vasseur, F., Duhamel, A., et al. (2015). Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson’s disease. Brain, 138(Pt 5), 1271–1283.

    Article  PubMed  Google Scholar 

  • Morgante, F., Espay, A. J., Gunraj, C., Lang, A. E., & Chen, R. (2006). Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain, 129(Pt 4), 1059–1069.

    Article  PubMed  Google Scholar 

  • Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63(1), 71–124.

    Article  CAS  PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M. C., Goetz, C. G., Marin, C., Kordower, J. H., Rodriguez, M., et al. (2010). Missing pieces in the Parkinson’s disease puzzle. Nature Medicine, 16(6), 653–661.

    Article  CAS  PubMed  Google Scholar 

  • Olanow, C. W. (2000). Tolcapone and hepatotoxic effects. Tasmar Advisory Panel. Archives of Neurology, 57(2), 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Olanow, C., Stern, M., & Sethi, K. (2009). The scientific and clinical basis for the treatment of Parkinson disease. Neurology, 72(Suppl 4), S1–S136.

    Article  PubMed  Google Scholar 

  • Oliveri, R. L., Annesi, G., Zappia, M., Civitelli, D., Montesanti, R., Branca, D., et al. (1999). Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology, 53(7), 1425–1430.

    Article  CAS  PubMed  Google Scholar 

  • Overeem, S., van Hilten, J. J., Ripley, B., Mignot, E., Nishino, S., & Lammers, G. J. (2002). Normal hypocretin-1 levels in Parkinson’s disease patients with excessive daytime sleepiness. Neurology, 58(3), 498–499.

    Article  CAS  PubMed  Google Scholar 

  • Pascale, E., Purcaro, C., Passarelli, E., Guglielmi, R., Vestri, A. R., Passarelli, F., et al. (2009). Genetic polymorphism of angiotensin-converting enzyme is not associated with the development of Parkinson’s disease and of l-dopa-induced adverse effects. Journal of the Neurological Sciences, 276(1–2), 18–21.

    Article  CAS  PubMed  Google Scholar 

  • Paus, S., Gadow, F., Knapp, M., Klein, C., Klockgether, T., & Wüllner, U. (2009). Motor complications in patients form the German Competence Network on Parkinson’s disease and the DRD3 Ser9Gly polymorphism. Movement Disorders, 24(7), 1080–1084.

    Article  PubMed  Google Scholar 

  • Paus, S., Grünewald, A., Klein, C., Knapp, M., Zimprich, A., Janetzky, B., et al. (2008). The DRD2 TaqIA polymorphism and demand of dopaminergic medication in Parkinson’s disease. Movement Disorders, 23(4), 599–602.

    Article  PubMed  Google Scholar 

  • Paus, S., Seeger, G., Brecht, H. M., Köster, J., El-Faddagh, M., Nöthen, M. M., et al. (2004). Association study of dopamine D2, D3, D4 receptor and serotonin transporter gene polymorphisms with sleep attacks in Parkinson’s disease. Movement Disorders, 19(6), 705–707.

    Article  PubMed  Google Scholar 

  • Payami, H., & Factor, S. A. (2014). Promise of pharmacogenomics for drug discovery, treatment and prevention of Parkinson’s disease. A perspective. Neurotherapeutics, 11(1), 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Picconi, B., Paillé, V., Ghiglieri, V., Bagetta, V., Barone, I., Lindgren, H. S., et al. (2008). L-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiology of Disease, 29(2), 327–335.

    Article  CAS  PubMed  Google Scholar 

  • Ramlackhansingh, A. F., Bose, S. K., Ahmed, I., Turkheimer, F. E., Pavese, N., & Brooks, D. J. (2011). Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology, 76(21), 1811–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieck, M., Schumacher-Schuh, A. F., Altmann, V., Callegari-Jacques, S. M., Rieder, C. R., & Hutz, M. H. (2016). Association between DRD2 and DRD3 gene polymorphisms and gastrointestinal symptoms induced by levodopa therapy in Parkinson’s disease. The Pharmacogenomics Journal. https://doi.org/10.1038/tpj.2016.79.

    PubMed  Google Scholar 

  • Rieck, M., Schumacher-Schuh, A. F., Altmann, V., Francisconi, C. L., Fagundes, P. T., Monte, T. L., et al. (2012). DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics, 13(15), 1701–1710.

    Article  CAS  PubMed  Google Scholar 

  • Rieck, M., Schumacher-Schuh, A. F., Callegari-Jacques, S. M., Altmann, V., Schneider Medeiros, M., Rieder, C. R., et al. (2015). Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson’s disease patients? Pharmacogenomics, 16(6), 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Rissling, I., Geller, F., Bandmann, O., Stiasny-Kolster, K., Körner, Y., Meindorfner, C., et al. (2004). Dopamine receptor gene polymorphisms in Parkinson’s disease patients reporting “sleep attacks”. Movement Disorders, 19(11), 1279–1284.

    Article  PubMed  Google Scholar 

  • Rissling, I., Korner, Y., Geller, F., Stiasny-Kolster, K., Oertel, W. H., & Moller, J. C. (2005). Preprohypocretin polymorphisms in Parkinson disease patients reporting “sleep attacks”. Sleep, 28(7), 871–875.

    Article  PubMed  Google Scholar 

  • Rotzinger, S., Bush, D. E., & Vaccarino, F. J. (2002). Cholecystokinin modulation of mesolimbic dopamine function: Regulation of motivated behaviour. Pharmacology and Toxicology, 91(6), 404–413.

    Article  CAS  PubMed  Google Scholar 

  • Rye, D. B., & Jankovic, J. (2002). Emerging views of dopamine in modulating sleep/wake state from an unlikely source: PD. Neurology, 58(3), 341–346.

    Article  PubMed  Google Scholar 

  • Schiffmann, S. N., Fisone, G., Moresco, R., Cunha, R. A., & Ferre, S. (2007). Adenosine A2A receptors and basal ganglia physiology. Progress in Neurobiology, 83(5), 277–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher-Schuh, A. F., Altmann, V., Rieck, M., Tovo-Rodrigues, L., Monte, T. L., Callegari-Jacques, S. M., et al. (2014a). Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. The Pharmacogenomics Journal, 14(3), 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Schumacher-Schuh, A. F., Francisconi, C., Altmann, V., Monte, T. L., Callegari-Jacques, S. M., Rieder, C. R., et al. (2013). Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson’s disease. Internal Journal of Neuropsychopharmacology, 16(6), 1251–1258.

    Article  CAS  Google Scholar 

  • Schumacher-Schuh, A. F., Rieder, C. R., & Hutz, M. H. (2014b). Parkinson’s disease pharmacogenomics: New findings and perspectives. Pharmacogenomics, 15(9), 1253–1271.

    Article  CAS  PubMed  Google Scholar 

  • Stavitsky, K., & Cronin-Golomb, A. (2011). Sleep quality in Parkinson disease: An examination of clinical variables. Cognitive and Behavioral Neurology, 24(2), 43–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strong, J. A., Dalvi, A., Revilla, F. J., Sahay, A., Samaha, F. J., Welge, J. A., et al. (2006). Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s Disease. Movement Disorders, 21(5), 654–659.

    Article  PubMed  Google Scholar 

  • Studler, J. M., Javoy-Agid, F., Cesselin, F., Legrand, J. C., & Agid, Y. (1982). CCK-8- Immunoreactivity distribution in human brain: Selective decrease in the substantia nigra from parkinsonian patients. Brain Research, 243(1), 176–179.

    Article  CAS  PubMed  Google Scholar 

  • Tao-Cheng, J. H. (2007). Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience, 150, 575–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanvi, B., Lo, N., & Robinson, T. (2007). Levodopa-induced dyskinesia in parkinson’s disease: Clinical features, pathogenesis, prevention and treatment. Postgraduate Medical Journal, 83(980), 384–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, U. (2002). Modulation of synaptic signalling complexes by Homer proteins. Journal of Neurochemistry, 81(3), 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Vallelunga, A., Flaibani, R., Formento-Dojot, P., Biundo, R., Facchini, S., & Antonini, A. (2012). Role of genetic polymorphisms of the dopaminergic system in Parkinson’s disease patients with impulse control disorders. Parkinsonism & Related Disorders, 18(4), 397–399.

    Article  Google Scholar 

  • Van de Giessen, E., de Win, M. M., Tanck, M. W., van den Brink, W., Baas, F., & Booij, J. (2009). Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. Journal of Nuclear Medicine, 50(1), 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve, L., Girard, H., Fortier, L. C., Gagné, J. F., & Guillemette, C. (2003). Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. The Journal of Pharmacology and Experimental Therapeutics, 307(1), 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Liu, Z. L., & Chen, B. (2001). Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology, 56(12), 1757–1759.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Si, Y. M., Liu, Z. L., & Yu, L. (2003). Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease. Pharmacogenetics, 13(6), 365–369.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., Harada, S., Nakamura, T., Ohkoshi, N., Yoshizawa, K., Hayashi, A., et al. (2003). Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology, 48(4), 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Wickremaratchi, M. M., Knipe, M. D., Sastry, B. S., Morgan, E., Jones, A., Salmon, R., et al. (2011). The motor phenotype of Parkinson’s disease in relation to age at onset. Movement Disorders, 26(3), 457–463.

    Article  PubMed  Google Scholar 

  • Wilkins, R. C., & Lis, J. T. (1998). GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Research, 26(11), 2672e8.

    Article  Google Scholar 

  • Woo, N. H., Teng, H. K., Siao, C. J., Chiaruttini, C., Pang, P. T., Milner, T. A., et al. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8(8), 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  • Wood, L. D. (2010). Clinical review and treatment of select adverse effects of dopamine receptor agonists in Parkinson’s disease. Drugs and Aging, 27(4), 295–310.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Liu, J., Yang, X., Qian, Y., & Xiao, Q. (2017). Association of the DRD2 CAn-STR and DRD3 Ser9Gly polymorphisms with Parkinson’s disease and response to dopamine agonists. Journal of the Neurological Sciences, 372, 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, H., Kuroki, T., Nakahara, T., Hashimoto, K., Tsutsumi, T., Hirano, M., et al. (2007). The dopamine D1 receptor agonist, but not the D2 receptor agonist, induces gene expression of Homer 1a in rat striatum and nucleus accumbens. Brain Research, 1131(1), 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, H., Nakajima, M., Katoh, M., Hara, Y., Tachibana, O., Yamashita, J., et al. (2004). A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics, 14(5), 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Yin, B., Chen, Y., & Zhang, L. (2013). Association between catechol-O-methyltransferase (COMT) gene polymorphisms, Parkinson’s disease, and levodopa efficacy. Molecular Diagnosis and Therapy. https://doi.org/10.1007/s40291-013-0066-z.

    PubMed  Google Scholar 

  • Yu, L., Frith, M. C., Suzuki, Y., Peterfreund, R. A., Gearan, T., & Sugano, S. (2004). Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Research, 1000(1–2), 156–173.

    Article  CAS  PubMed  Google Scholar 

  • Zahodne, L. B., & Fernandez, H. H. (2008). Pathophysiology and treatment of psychosis in Parkinson’s disease: A review. Drugs and Aging, 25(8), 665–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zappia, M., Annesi, G., Nicoletti, G., Arabia, G., Annesi, F., Messina, D., et al. (2005). Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: An exploratory study. Archives of Neurology, 62(4), 601–605.

    Article  PubMed  Google Scholar 

  • Zareparsi, S., Camicioli, R., Sexton, G., Bird, T., Swanson, P., Kaye, J., et al. (2002). Age at onset of Parkinson disease and Apolipoprotein E genotypes. American Journal of Medical Genetics, 107(2), 156–161.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Ciccacci.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politi, C., Ciccacci, C., Novelli, G. et al. Genetics and Treatment Response in Parkinson’s Disease: An Update on Pharmacogenetic Studies. Neuromol Med 20, 1–17 (2018). https://doi.org/10.1007/s12017-017-8473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-017-8473-7

Keywords

Navigation