Skip to main content

Advertisement

Log in

Brain Iron Dysregulation and the Risk of Ageing White Matter Lesions

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

White matter lesions (WML) or leukoaraiosis is a major feature in cerebral imaging of older people, and their prevalence increases with age. The clinical effects of WML vary with the main impairment being detected in the cognitive functions, increased risk of severe depression and motor impairment. Although vascular comorbidities have been found to be the main changes in these brains, increased production of reactive oxygen species (ROS) could represent a risk factor for these lesions with elemental iron being a potential factor for ROS production. This study focuses on changes in iron, iron-regulating proteins and RNA expression of iron metabolism genes. Three groups of samples were used: WML, normal areas from lesional WM [NAWM (L)] as disease control and normal WM from control brains [NAWM(C)]. Ferric iron staining was undertaken using known Perl’s reaction. Immunohistochemistry (IHC) of white matter for ceruloplasmin (Cp), haemochromatosis (HFE) and transferrin receptor (TfR) was done. Cellular localization of HFE and Cp was performed using dual-antibody IHC. Whole-genome RNA was extracted from WML, NAWM (L) and NAWM(C), and QPCR for HFE, TF, TfR, ceruloplasmin, ferritin and ferroportin was performed. Ferric iron staining shows increased diffuse iron staining among WML, followed by NAWM (L) and the least group being NAWM(C). IHC shows increased HFE and CP expression in lesional WM, while TfR shows no changes among the groups. HFE colocalized with vascular endothelium and microglia in WML and control samples, while Cp colocalized with microglia and some expression was shown by astrocytes. The mRNA expression using QPCR suggests a pattern that favours decreased intracellular iron influx, increased ferrous oxidation and increased iron export from the cells. Iron metabolism seems to be changed in brains with WML, increased elemental iron in these brains and in turn increased production of free oxidative radicals could represent a potentiating factor for the development of ageing WML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam-Vizi, V., & Chinopoulos, C. (2006). Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends in Pharmacological Sciences, 27(12), 639–645.

    Article  PubMed  CAS  Google Scholar 

  • Altamura, S., & Muckenthaler, M. U. (2009). Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. Journal of Alzheimer’s Disease, 16(4), 879–895.

    PubMed  Google Scholar 

  • Bennett, M. J., Lebron, J. A., & Bjorkman, P. J. (2000). Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature, 403(6765), 46–53.

    Article  PubMed  CAS  Google Scholar 

  • Boll, M. C., Alcaraz-Zubeldia, M., Montes, S., & Rios, C. (2008). Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochemical Research, 33(9), 1717–1723.

    Article  PubMed  CAS  Google Scholar 

  • Brar, S., Henderson, D., Schenck, J., & Zimmerman, E. A. (2009). Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism. Archives of Neurology, 66(3), 371–374.

    Article  PubMed  Google Scholar 

  • Breteler, M. M., van Swieten, J. C., Bots, M. L., Grobbee, D. E., Claus, J. J., van den Hout, J. H., et al. (1994). Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: The Rotterdam Study. Neurology, 44(7), 1246–1252.

    PubMed  CAS  Google Scholar 

  • Bronge, L., & Wahlund, L. O. (2000). White matter lesions in dementia: an MRI study on blood-brain barrier dysfunction. Dementia and Geriatric Cognitive Disorders, 11(5), 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Erb, G. L., Osterbur, D. L., & LeVine, S. M. (1996). The distribution of iron in the brain: A phylogenetic analysis using iron histochemistry. Brain Research, 93(1–2), 120–128.

    PubMed  CAS  Google Scholar 

  • Farkas, E., de Vos, R. A., Donka, G., Jansen Steur, E. N., Mihaly, A., & Luiten, P. G. (2006). Age-related microvascular degeneration in the human cerebral periventricular white matter. Acta Neuropathologica, 111(2), 150–157.

    Article  PubMed  Google Scholar 

  • Feder, J. N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D. A., Basava, A., et al. (1996). A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genetics, 13(4), 399–408.

    Article  PubMed  CAS  Google Scholar 

  • Fernando, M. S., O’Brien, J. T., Perry, R. H., English, P., Forster, G., McMeekin, W., et al. (2004). Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathology and Applied Neurobiology, 30(4), 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Fiacco, T. A., Agulhon, C., & McCarthy, K. D. (2009). Sorting out astrocyte physiology from pharmacology. Annual Review of Pharmacology and Toxicology, 49, 151–174.

    Article  PubMed  CAS  Google Scholar 

  • Galaris, D., & Pantopoulos, K. (2008). Oxidative stress and iron homeostasis: mechanistic and health aspects. Critical Reviews in Clinical Laboratory Sciences, 45(1), 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Cuyar, L. F., Perry, G., Miyajima, H., Atwood, C. S., Riveros-Angel, M., Lyons, P. F., et al. (2008). Redox active iron accumulation in aceruloplasminemia. Neuropathology, 28(5), 466–471.

    Article  PubMed  Google Scholar 

  • Gouya, L., Muzeau, F., Robreau, A. M., Letteron, P., Couchi, E., Lyoumi, S., et al. (2007). Genetic study of variation in normal mouse iron homeostasis reveals ceruloplasmin as an HFE-hemochromatosis modifier gene. Gastroenterology, 132(2), 679–686.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97(6), 1634–1658.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. The Biochemical Journal, 219(1), 1–14.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. (1990). Role of free radicals and catalytic metal ions in human disease: an overview. Methods in Enzymology, 186, 1–85.

    Article  PubMed  CAS  Google Scholar 

  • Heiden, A., Kettenbach, J., Fischer, P., Schein, B., Ba-Ssalamah, A., Frey, R., et al. (2005). White matter hyperintensities and chronicity of depression. Journal of Psychiatric Research, 39(3), 285–293.

    Article  PubMed  Google Scholar 

  • Jeong, S. Y., & David, S. (2003). Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. The Journal of Biological Chemistry, 278(29), 27144–27148.

    Article  PubMed  CAS  Google Scholar 

  • Kato, J., Kobune, M., et al. (2007). Iron/IRP-1-dependent regulation of mRNA expression for transferrin receptor, DMT1 and ferritin during human erythroid differentiation. Experimental Hematology, 35(6), 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Laine, F., Ropert, M., Lan, C. L., Loreal, O., Bellissant, E., Jard, C., et al. (2002). Serum ceruloplasmin and ferroxidase activity are decreased in HFE C282Y homozygote male iron-overloaded patients. Journal of Hepatology, 36(1), 60–65.

    Article  PubMed  CAS  Google Scholar 

  • LeVine, S. M. (1997). Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Research, 760(1–2), 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Lopes, K. O., Sparks, D. L., & Streit, W. J. (2008). Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia, 56(10), 1048–1060.

    Article  PubMed  Google Scholar 

  • Marshall, G. A., Hendrickson, R., Kaufer, D. I., Ivanco, L. S., & Bohnen, N. I. (2006). Cognitive correlates of brain MRI subcortical signal hyperintensities in non-demented elderly. International Journal of Geriatric Psychiatry, 21(1), 32–35.

    Article  PubMed  Google Scholar 

  • McGahan, M. C., Harned, J., Mukunnemkeril, M., Goralska, M., Fleisher, L., & Ferrell, J. B. (2005). Iron alters glutamate secretion by regulating cytosolic aconitase activity. American Journal of Physiology, 288(5), C1117–C1124.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, M. K., Kumawat, K. L., & Basu, A. (2008). Japanese encephalitis virus differentially modulates the induction of multiple pro-inflammatory mediators in human astrocytoma and astroglioma cell-lines. Cell Biology International, 32(12), 1506–1513.

    Article  PubMed  CAS  Google Scholar 

  • Moalem, S., Percy, M. E., Andrews, D. F., Kruck, T. P., Wong, S., Dalton, A. J., et al. (2000). Erratum: Are hereditary hemochromatosis mutations involved in alzheimer disease? American Journal of Medical Genetics, 95(2), 189.

    Article  PubMed  Google Scholar 

  • Mukhopadhyay, C. K., Mazumder, B., & Fox, P. L. (2000). Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. The Journal of Biological Chemistry, 275(28), 21048–21054.

    Article  PubMed  CAS  Google Scholar 

  • Orrenius, S., Gogvadze, V., & Zhivotovsky, B. (2007). Mitochondrial oxidative stress: Implications for cell death. Annual Review of Pharmacology and Toxicology, 47, 143–183.

    Article  PubMed  CAS  Google Scholar 

  • Piet, R., Vargova, L., Sykova, E., Poulain, D. A., & Oliet, S. H. (2004). Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2151–2155.

    Article  PubMed  CAS  Google Scholar 

  • Salazar, J., Mena, N., & Nunez, M. T. (2006). Iron dyshomeostasis in Parkinson’s disease. Journal of Neural Transmission, 71, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. E., Ince, P. G., Higham, C. E., Gelsthorpe, C. H., Fernando, M. S., Matthews, F., et al. (2007). Microglial activation in white matter lesions and nonlesional white matter of ageing brains. Neuropathology and Applied Neurobiology, 33(6), 670–683.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. E., Hosny, O., Wharton, S. B., Heath, P. R., Holden, H., Fernando, M. S., et al. (2009). Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways. Stroke; A Journal of Cerebral Circulation, 40(2), 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Yen, A. A., Simpson, E. P., Henkel, J. S., Beers, D. R., & Appel, S. H. (2004). HFE mutations are not strongly associated with sporadic ALS. Neurology, 62, 1611–1612.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Surguladze, N., Slagle-Webb, B., Cozzi, A., & Connor, J. R. (2006). Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia, 54(8), 795–804.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola H. Gebril.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebril, O.H., Simpson, J.E., Kirby, J. et al. Brain Iron Dysregulation and the Risk of Ageing White Matter Lesions. Neuromol Med 13, 289–299 (2011). https://doi.org/10.1007/s12017-011-8161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-011-8161-y

Keywords

Navigation