Skip to main content

Advertisement

Log in

Immunology of Aging: the Birth of Inflammaging

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dziechciaż M, Filip R (2014) Biological psychological and social determinants of old age: bio-psycho-social aspects of human aging. Ann Agric Environ Med 21:835–838. https://doi.org/10.5604/12321966.1129943

    Article  PubMed  Google Scholar 

  2. Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17:205–220. https://doi.org/10.1007/s10522-015-9584-x

    Article  CAS  PubMed  Google Scholar 

  3. da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T (2016) A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev 29:90–112. https://doi.org/10.1016/j.arr.2016.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, Ferbeyre G, Ferrucci L, Franceschi C, Frasca D, Friguet B, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Gut P, Ivanchenko M, Legault V, Lemaître JF, Liontis T, Liu GH, Liu M, Maier AB, Nóbrega OT, Olde Rikkert MGM, Pawelec G, Rheault S, Senior AM, Simm A, Soo S, Traa A, Ukraintseva S, Vanhaelen Q, Van Raamsdonk JM, Witkowski JM, Yashin AI, Ziman R, Fülöp T (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev 191:111316. https://doi.org/10.1016/j.mad.2020.111316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

    Article  CAS  PubMed  Google Scholar 

  7. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4

    Article  CAS  PubMed  Google Scholar 

  8. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4-9. https://doi.org/10.1093/gerona/glu057

    Article  PubMed  Google Scholar 

  9. Fulop T, Witkowski JM, Olivieri F, Larbi A (2018) The integration of inflammaging in age-related diseases. Semin Immunol 40:17–35. https://doi.org/10.1016/j.smim.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME (2020) The interplay between immunosenescence and age-related diseases. Semin Immunopathol 42:545–557. https://doi.org/10.1007/s00281-020-00806-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP (2019) Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis 10:367–382. https://doi.org/10.14336/AD.2018.0324

    Article  PubMed  PubMed Central  Google Scholar 

  12. Royce GH, Brown-Borg HM, Deepa SS (2019) The potential role of necroptosis in inflammaging and aging. Geroscience 41:795–811. https://doi.org/10.1007/s11357-019-00131-w

    Article  PubMed  PubMed Central  Google Scholar 

  13. Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, Morabito N, Lasco A, Gangemi S, Basile G (2016) Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz) 64:111–126. https://doi.org/10.1007/s00005-015-0377-3

    Article  CAS  PubMed  Google Scholar 

  14. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T (2019) Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci 20(18):4472. https://doi.org/10.3390/ijms20184472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen G, Yung R (2019) Meta-inflammaging at the crossroad of geroscience. Aging Med (Milton) 2:157–161. https://doi.org/10.1002/agm2.12078

    Article  PubMed  Google Scholar 

  16. Müller L, Di Benedetto S, Pawelec G (2019) The immune system and its dysregulation with aging. Subcell Biochem 91:21–43. https://doi.org/10.1007/978-981-13-3681-2_2

    Article  CAS  PubMed  Google Scholar 

  17. Pawelec G, Bronikowski A, Cunnane SC, Ferrucci L, Franceschi C, Fülöp T, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V, Kennedy BK, Larbi A, Lemaître JF, Liu GH, Maier AB, Morais JA, Nóbrega OT, Moskalev A, Rikkert MO, Seluanov A, Senior AM, Ukraintseva S, Vanhaelen Q, Witkowski J, Cohen AA (2020) The conundrum of human immune system “senescence.” Mech Ageing Dev 192:111357. https://doi.org/10.1016/j.mad.2020.111357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu W, Wong G, Hwang YY, Larbi A (2020) The untwining of immunosenescence and aging. Semin Immunopathol 42:559–572. https://doi.org/10.1007/s00281-020-00824-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Allen JC, Toapanta FR, Chen W, Tennant SM (2020) Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 38:8264–8272. https://doi.org/10.1016/j.vaccine.2020.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salminen A, Kaarniranta K, Kauppinen A (2019) Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 76:1901–1918. https://doi.org/10.1007/s00018-019-03048-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drew W, Wilson DV, Sapey E (2018) Inflammation and neutrophil immunosenescence in health and disease: targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol 105:70–77. https://doi.org/10.1016/j.exger.2017.12.020

    Article  PubMed  Google Scholar 

  22. Moskalev A, Stambler I, Caruso C (2020) Innate and adaptive immunity in aging and longevity: the foundation of resilience. Aging Dis 11:1363–1373. https://doi.org/10.14336/AD.2020.0603

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nikolich-Žugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19:10–19. https://doi.org/10.1038/s41590-017-0006-x

    Article  CAS  PubMed  Google Scholar 

  24. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24:331–341. https://doi.org/10.1016/j.smim.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  25. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM (2009) Shaw AC. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333. https://doi.org/10.1016/j.it.2009.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bandaranayake T, Shaw AC (2016) Clin Geriatr Med 32:415–432. https://doi.org/10.1016/j.cger.2016.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102:977–988. https://doi.org/10.1189/jlb.3RI0716-335R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goronzy JJ, Weyand CM (2019) Mechanisms underlying T cell ageing. Nat Rev Immunol 19:573–583. https://doi.org/10.1038/s41577-019-0180-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong GCL, Strickland MC, Larbi A (2020) Changes in T cell homeostasis and vaccine responses in old age. Interdiscip Top Gerontol Geriatr 43:36–55. https://doi.org/10.1159/000504487

    Article  PubMed  Google Scholar 

  30. Saavedra D, Fuertes SA, Suárez GM, González A, Lorenzo-Luaces P, García B, Aznar E, Mazorra Z, Crombet T, Speiser DE, Lage A (2019) Biomodulina T partially restores immunosenescent CD4 and CD8 T cell compartments in the elderly. Exp Gerontol 124:110633. https://doi.org/10.1016/j.exger.2019.110633

    Article  CAS  PubMed  Google Scholar 

  31. Alves AS, Bueno V (2019) Immunosenescence: participation of T lymphocytes and myeloid-derived suppressor cells in aging-related immune response changes. Einstein (Sao Paulo). 17(2):eRB4733. https://doi.org/10.31744/einstein_journal/2019RB4733

  32. Koch S, Solana R, Dela Rosa O, Pawelec G (2006) Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev 127:538–543. https://doi.org/10.1016/j.mad.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  33. Larbi A, Fulop T (2014) From “truly naive” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A 85:25–35. https://doi.org/10.1002/cyto.a.22351

    Article  CAS  PubMed  Google Scholar 

  34. Hazeldine J, Lord JM (2015) Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology 16:187–201. https://doi.org/10.1007/s10522-014-9514-3

    Article  CAS  PubMed  Google Scholar 

  35. Montgomery RR, Shaw AC (2015) Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol 98:937–943. https://doi.org/10.1189/jlb.5MR0315-104R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22(4):507–513. https://doi.org/10.1016/j.coi.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3:217–226. https://doi.org/10.1111/j.1474-9728.2004.00110.x

    Article  CAS  PubMed  Google Scholar 

  38. Fülöp T Jr, Fóris G, Wórum I, Leövey A (1985) Age-dependent alterations of Fc gamma receptor-mediated effector functions of human polymorphonuclear leucocytes. Clin Exp Immunol 61:425–432

    PubMed  PubMed Central  Google Scholar 

  39. Fülöp T, Fóris G, Wórum I, Leövey A (1984) Age-dependent changes of the Fc gamma-receptor-mediated functions of human monocytes. Int Arch Allergy Appl Immunol 74:76–79. https://doi.org/10.1159/000233520

    Article  PubMed  Google Scholar 

  40. Tomar N, De RK (2014) A brief outline of the immune system. Methods Mol Biol 1184:3–12. https://doi.org/10.1007/978-1-4939-1115-8_1

    Article  CAS  PubMed  Google Scholar 

  41. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33-40. https://doi.org/10.1016/j.jaci.2009.09.017

    Article  PubMed  Google Scholar 

  42. Hirokawa K, Utsuyama M, Kasai M, Kurashima C, Ishijima S, Zeng YX (1994) Immunol Lett 40:269–277. https://doi.org/10.1016/0165-2478(94)00065-4

    Article  CAS  PubMed  Google Scholar 

  43. Thapa P, Farber DL (2019) The role of the thymus in the immune response. Thorac Surg Clin 29:123–131. https://doi.org/10.1016/j.thorsurg.2018.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  44. Thomas R, Wang W, Su DM (2020) Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing 17:2. https://doi.org/10.1186/s12979-020-0173-8.6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pawelec G, Barnett Y, Forsey R, Frasca D, Globerson A, McLeod J, Caruso C, Franceschi C, Fülöp T, Gupta S, Mariani E, Mocchegiani E, Solana R (2002) T cells and aging, January 2002 update. Front Biosci 1(7):d1056–d1183. https://doi.org/10.2741/a831

    Article  Google Scholar 

  46. Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A 111:13139–13144. https://doi.org/10.1073/pnas.1409155111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Benedetto S, Derhovanessian E, Steinhagen-Thiessen E, Goldeck D, Müller L, Pawelec G (2015) Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology 16:631–643. https://doi.org/10.1007/s10522-015-9563-2

    Article  CAS  PubMed  Google Scholar 

  48. Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17(1):7–19. https://doi.org/10.1007/s10522-015-9578-8

    Article  CAS  PubMed  Google Scholar 

  49. Castelo-Branco C, Soveral I (2014) The immune system and aging: a review. Gynecol Endocrinol 30(1):16–22. https://doi.org/10.3109/09513590.2013.852531

    Article  CAS  PubMed  Google Scholar 

  50. Pawelec G (2018) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9. https://doi.org/10.1016/j.exger.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  51. Pera A, Campos C, López N, Hassouneh F, Alonso C, Tarazona R, Solana R (2015) Immunosenescence: implications for response to infection and vaccination in older people. Maturitas 82:50–55. https://doi.org/10.1016/j.maturitas.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  52. Gustafson CE, Kim C, Weyand CM, Goronzy JJ (2020) J Allergy Clin Immunol 145:1309–1321. https://doi.org/10.1016/j.jaci.2020.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andrew MK, Bowles SK, Pawelec G, Haynes L, Kuchel GA, McNeil SA, McElhaney JE (2019) Influenza vaccination in older adults: recent innovations and practical applications. Drugs Aging 36:29–37. https://doi.org/10.1007/s40266-018-0597-4

    Article  PubMed  Google Scholar 

  54. Wagner A, Weinberger B (2020) Vaccines to prevent infectious diseases in the older population: immunological challenges and future perspectives. Front Immunol 11:717. https://doi.org/10.3389/fimmu.2020.00717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J, Vesikari T, Watanabe D, Weckx L, Zahaf T, Heineman TC, ZOE-50 Study Group (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372:2087–2096. https://doi.org/10.1056/NEJMoa1501184

    Article  Google Scholar 

  56. de Waure C, Boccalini S, Bonanni P, Amicizia D, Poscia A, Bechini A, Barbieri M, Capri S, Specchia ML, Di Pietro ML, Arata L, Cacciatore P, Panatto D, Gasparini R (2019) Adjuvanted influenza vaccine for the Italian elderly in the 2018/19 season: an updated health technology assessment. Eur J Public Health 29:900–905. https://doi.org/10.1093/eurpub/ckz041

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vallejo AN (2006) Age-dependent alterations of the T cell repertoire and functional diversity of T cells of the aged. Immunol Res 36:221–228. https://doi.org/10.1385/IR:36:1:221

    Article  CAS  PubMed  Google Scholar 

  58. Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naive T cell maintenance and function in human aging. J Immunol 194:4073–4080. https://doi.org/10.4049/jimmunol.1500046

    Article  CAS  PubMed  Google Scholar 

  59. Weyand CM, Goronzy JJ (2016) Aging of the immune system. Mechanisms and therapeutic targets. Ann Am Thorac Soc S422-S428. 13 Suppl 5(Suppl 5). https://doi.org/10.1513/AnnalsATS.201602-095AW

  60. Qi Q, Zhang DW, Weyand CM, Goronzy JJ (2014) Mechanisms shaping the naive T cell repertoire in the elderly - thymic involution or peripheral homeostatic proliferation? Exp Gerontol 54:71–74. https://doi.org/10.1016/j.exger.2014.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol 8:982. https://doi.org/10.3389/fimmu.2017.00982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM (2020) Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 42:521–536. https://doi.org/10.1007/s00281-020-00818-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vitlic A, Lord JM, Phillips AC (2014) Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. Age (Dordr) 36:9631. https://doi.org/10.1007/s11357-014-9631

    Article  PubMed  Google Scholar 

  64. Goldberg EL, Shaw AC, Montgomery RR (2020) How inflammation blunts innate immunity in aging. Interdiscip Top Gerontol Geriatr 43:1–17. https://doi.org/10.1159/000504480

    Article  PubMed  PubMed Central  Google Scholar 

  65. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging.’ Trends Endocrinol Metab 28:199–212. https://doi.org/10.1016/j.tem.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  66. Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, Henson SM (2018) Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17:e12675. https://doi.org/10.1111/acel.12675

    Article  CAS  PubMed  Google Scholar 

  67. Xu W, Larbi A (2017) Markers of T cell senescence in humans. Int J Mol Sci 18:1742. https://doi.org/10.3390/ijms18081742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19:1680–1698. https://doi.org/10.2174/138161213805219711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fülöp T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271. https://doi.org/10.3389/fimmu.2013.00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Witkowski JM, Mikosik A, Bryl E, Fulop T (2018) Proteodynamics in aging human T cells - the need for its comprehensive study to understand the fine regulation of T lymphocyte functions. Exp Gerontol 107:161–168. https://doi.org/10.1016/j.exger.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  71. Mayya V, Judokusumo E, Abu-Shah E, Neiswanger W, Sachar C, Depoil D, Kam LC, Dustin ML (2019) Cutting edge: synapse propensity of human memory CD8 T cells confers competitive advantage over naive counterparts. J Immunol 203:601–606. https://doi.org/10.4049/jimmunol.1801687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T Jr (2006) Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 18:1017–1030. https://doi.org/10.1016/j.cellsig.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  73. Fulop T, Le Page A, Garneau H, Azimi N, Baehl S, Dupuis G, Pawelec G, Larbi A (2012) Aging, immunosenescence and membrane rafts: the lipid connection. Longev Healthspan 1:6. https://doi.org/10.1186/2046-2395-1-6

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ohno-Iwashita Y, Shimada Y, Hayashi M, Inomata M (2010) Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int 10(Suppl 1):S41-52. https://doi.org/10.1111/j.1447-0594.2010.00600.x

    Article  PubMed  Google Scholar 

  75. Gupta SS (1989) Membrane signal transduction in T cells in aging humans. Ann N Y Acad Sci 568:277–282. https://doi.org/10.1111/j.1749-6632.1989.tb12517.x

    Article  CAS  PubMed  Google Scholar 

  76. Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A (2014) Cellular signaling in the aging immune system. Curr Opin Immunol 29:105–111. https://doi.org/10.1016/j.coi.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  77. Le Page A, Dupuis G, Larbi A, Witkowski JM, Fülöp T (2018) Signal transduction changes in CD4(+) and CD8(+) T cell subpopulations with aging. Exp Gerontol 105:128–139. https://doi.org/10.1016/j.exger.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  78. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169. https://doi.org/10.1111/j.0105-2896.2005.00256.x

    Article  CAS  PubMed  Google Scholar 

  79. McGuire PJ (2019) Mitochondrial dysfunction and the aging immune system. Biology (Basel) 8:26. https://doi.org/10.3390/biology8020026

    Article  CAS  PubMed  Google Scholar 

  80. Lee KA, Robbins PD, Camell CD (2021) Intersection of immunometabolism and immunosenescence during aging. Curr Opin Pharmacol 57:107–116. https://doi.org/10.1016/j.coph.2021.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643. https://doi.org/10.1016/j.immuni.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nicoli F, Papagno L, Frere JJ, Cabral-Piccin MP, Clave E, Gostick E, Toubert A, Price DA, Caputo A, Appay V (2018) Front Immunol 9:2736. https://doi.org/10.3389/fimmu.2018.02736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yanes RE, Zhang H, Shen Y, Weyand CM, Goronzy JJ (2019) Metabolic reprogramming in memory CD4 T cell responses of old adults. Clin Immunol 207:58–67. https://doi.org/10.1016/j.clim.2019.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21:183–203. https://doi.org/10.1038/s41580-019-0199-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bjedov I, Rallis C (2020) The target of rapamycin signalling pathway in ageing and lifespan regulation. Genes (Basel) 11:1043. https://doi.org/10.3390/genes11091043

    Article  CAS  PubMed  Google Scholar 

  86. Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of the immune and the endocrine systems. Immunol Today 18:169–174

    Article  CAS  PubMed  Google Scholar 

  87. Teti G, Biondo C, Beninati C (2016) The phagocyte, Metchnikoff, and the foundation of immunology. Microbiol Spectr 4(2). https://doi.org/10.1128/microbiolspec.MCHD-0009-2015

  88. Underhill DM, Gordon S, Imhof BA, Núñez G, Bousso P (2016) Elie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nat Rev Immunol 16:651–656. https://doi.org/10.1038/nri.2016.89

    Article  CAS  PubMed  Google Scholar 

  89. Beutler B (2004) Innate immunity: an overview. Mol Immunol 40(12):845–859. https://doi.org/10.1016/j.molimm.2003.10.005

    Article  CAS  PubMed  Google Scholar 

  90. Ebihara T (2020) Dichotomous regulation of acquired immunity by innate lymphoid cells. Cells 9:1193. https://doi.org/10.3390/cells9051193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rosales C (2020) Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 108:377–396. https://doi.org/10.1002/JLB.4MIR0220-574RR

    Article  CAS  PubMed  Google Scholar 

  92. Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718

    Article  CAS  PubMed  Google Scholar 

  93. Bi J, Wang X (2020) Molecular regulation of NK cell maturation. Front Immunol 11:1945. https://doi.org/10.3389/fimmu.2020.01945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Riera Romo M, Pérez-Martínez D, Castillo FC (2016) Innate immunity in vertebrates: an overview. Immunology 148:125–139. https://doi.org/10.1111/imm.12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ottaviani E, Malagoli D, Capri M, Franceschi C (2008) Ecoimmunology: is there any room for the neuroendocrine system? BioEssays 30(9):868–874. https://doi.org/10.1002/bies.20801

    Article  PubMed  Google Scholar 

  96. Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17:147–157. https://doi.org/10.1007/s10522-015-9615-7

    Article  CAS  PubMed  Google Scholar 

  97. Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11(5):867–875. https://doi.org/10.1111/j.1474-9726.2012.00851.x

    Article  CAS  PubMed  Google Scholar 

  98. Nyugen J, Agrawal S, Gollapudi S, Gupta S (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30(6):806–813. https://doi.org/10.1007/s10875-010-9448-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Maeyer RPH, Chambers ES (2021) The impact of ageing on monocytes and macrophages. Immunol Lett 230:1–10. https://doi.org/10.1016/j.imlet.2020.12.003

    Article  CAS  PubMed  Google Scholar 

  100. Merino A, Buendia P, Martin-Malo A, Aljama P, Ramirez R, Carracedo J (2011) Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J Immunol 186(3):1809–1815. https://doi.org/10.4049/jimmunol.1001866

    Article  CAS  PubMed  Google Scholar 

  101. Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, Larbi A, Wong SC (2018) The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 9(3):266. https://doi.org/10.1038/s41419-018-0327-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tarazona R, Campos C, Pera A, Sanchez-Correa B, Solana R (2015) Flow cytometry analysis of NK cell phenotype and function in aging. Methods Mol Biol 1343:9–18. https://doi.org/10.1007/978-1-4939-2963-4_2

    Article  CAS  PubMed  Google Scholar 

  103. Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61. https://doi.org/10.1016/j.coi.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  104. Gupta S (2014) Role of dendritic cells in innate and adaptive immune response in human aging. Exp Gerontol 54:47–52. https://doi.org/10.1016/j.exger.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  105. Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20:95–112. https://doi.org/10.1038/s41577-019-0215-7

    Article  CAS  PubMed  Google Scholar 

  106. Ablasser A, Hur S (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 21:17–29. https://doi.org/10.1038/s41590-019-0556-1

    Article  CAS  PubMed  Google Scholar 

  107. Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180:1044–1066. https://doi.org/10.1016/j.cell.2020.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34. https://doi.org/10.3109/08830185.2010.529976

    Article  CAS  PubMed  Google Scholar 

  109. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427. https://doi.org/10.1177/0022034510381264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou Y, He C, Wang L, Ge B (2017) Post-translational regulation of antiviral innate signaling. Eur J Immunol 47:1414–1426. https://doi.org/10.1002/eji.201746959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887. https://doi.org/10.1038/nri3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bailey KL, Smith LM, Heires AJ, Katafiasz DM, Romberger DJ, LeVan TD (2019) Aging leads to dysfunctional innate immune responses to TLR2 and TLR4 agonists. Aging Clin Exp Res 31:1185–1193. https://doi.org/10.1007/s40520-018-1064-0

    Article  PubMed  Google Scholar 

  113. Fülöp T, Larbi A, Witkowski JM (2019) Human inflammaging. Gerontology 65:495–504. https://doi.org/10.1159/000497375

    Article  PubMed  Google Scholar 

  114. Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T Jr (2006) Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 79:1061–1072. https://doi.org/10.1189/jlb.0805481

    Article  CAS  PubMed  Google Scholar 

  115. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20:375–388. https://doi.org/10.1038/s41577-020-0285-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109:17537–17542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Domínguez-Andrés J, Fanucchi S, Joosten LAB, Mhlanga MM, Netea MG (2020) Advances in understanding molecular regulation of innate immune memory. Curr Opin Cell Biol 63:68–75

    Article  PubMed  Google Scholar 

  118. Ciarlo E, Heinonen T, Théroude C, Asgari F, Le Roy D, Netea MG, Roger T (2019) Trained immunity confers broad-spectrum protection against bacterial infections. J Infect Dis pii: jiz692

  119. van der Heijden CDCC, Noz MP, Joosten LAB, Netea MG, Riksen NP, Keating ST (2017) Epigenetics and trained immunity. Antioxid Redox Signal 29(11):1023–1040

    Article  PubMed  Google Scholar 

  120. Arts RJ, Joosten LA, Netea MG (2016) Immunometabolic circuits in trained immunity. Semin Immunol 28:425–430

    Article  CAS  PubMed  Google Scholar 

  121. Franceschi C (1989) Cell proliferation, cell death and aging. Aging 1:3–15. https://doi.org/10.1007/BF03323871

    Article  CAS  PubMed  Google Scholar 

  122. Kirkwood TB, Franceschi C (1992) Is aging as complex as it would appear? New perspectives in aging research. Ann N Y Acad Sci 21(663):412–417. https://doi.org/10.1111/j.1749-6632.1992.tb38685.x

    Article  Google Scholar 

  123. Son DH, Park WJ, Lee YJ (2019) Recent advances in anti-aging medicine. Korean J Fam Med 40:289–296. https://doi.org/10.4082/kjfm.19.0087

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chatterjee A, Georgiev G, Iannacchione G (2017) Aging and efficiency in living systems: complexity, adaptation and self-organization. Mech Ageing Dev 163:2–7. https://doi.org/10.1016/j.mad.2017.02.009

    Article  PubMed  Google Scholar 

  125. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105. https://doi.org/10.1016/j.mad.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  126. Giunta S (2008) Exploring the complex relations between inflammation and aging (inflamm-aging): anti-inflamm-aging remodelling of inflamm-aging, from robustness to frailty. Inflamm Res 57(12):558–563. https://doi.org/10.1007/s00011-008-7243-2

    Article  CAS  PubMed  Google Scholar 

  127. Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, Milot E, Dusseault-Bélanger F, Ferrucci L (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57. https://doi.org/10.1016/j.mad.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ottaviani E, Franceschi C (1997) The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol Today 18(4):169–174. https://doi.org/10.1016/s0167-5699(97)84663-4

    Article  CAS  PubMed  Google Scholar 

  129. Ottaviani E, Franceschi C (1998) A new theory on the common evolutionary origin of natural immunity, inflammation and stress response: the invertebrate phagocytic immunocyte as an eye-witness. Domest Anim Endocrinol 15(5):291–296. https://doi.org/10.1016/s0739-7240(98)00021-6

    Article  CAS  PubMed  Google Scholar 

  130. Martucci M, Ostan R, Biondi F, Bellavista E, Fabbri C, Bertarelli C, Salvioli S, Capri M, Franceschi C, Santoro A (2017) Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev 75(6):442–455. https://doi.org/10.1093/nutrit/nux013

    Article  PubMed  PubMed Central  Google Scholar 

  131. Santoro A, Martucci M, Conte M, Capri M, Franceschi C, Salvioli S (2020) Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev 64:101142. https://doi.org/10.1016/j.arr.2020.101142

    Article  CAS  PubMed  Google Scholar 

  132. Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1(4667):1383–1392. https://doi.org/10.1136/bmj.1.4667.1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafè M (1999) Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol 34(8):911–921. https://doi.org/10.1016/s0531-5565(99)00068-6

    Article  CAS  PubMed  Google Scholar 

  134. Hitt R, Young-Xu Y, Silver M, Perls T (1999) Centenarians: the older you get, the healthier you have been. Lancet 354(9179):652. https://doi.org/10.1016/S0140-6736(99)01987-X

    Article  CAS  PubMed  Google Scholar 

  135. Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 16:12–16. https://doi.org/10.1016/0167-5699(95)80064-6

    Article  CAS  PubMed  Google Scholar 

  136. Santos-Lozano A, Valenzuela PL, Llavero F, Lista S, Carrera-Bastos P, Hampel H, Pareja-Galeano H, Gálvez BG, López JA, Vázquez J, Emanuele E, Zugaza JL, Lucia A (2020) Successful aging: insights from proteome analyses of healthy centenarians. Aging (Albany NY) 12:3502–3515. https://doi.org/10.18632/aging.102826

    Article  CAS  PubMed  Google Scholar 

  137. Caruso C, Aiello A, Accardi G, Ciaglia E, Cattaneo M, Puca A (2019) Genetic signatures of centenarians: implications for achieving successful aging. Curr Pharm Des 25:4133–4138. https://doi.org/10.2174/1381612825666191112094544

    Article  CAS  PubMed  Google Scholar 

  138. Johnson TE, Bruunsgaard H (1998) Implications of hormesis for biomedical aging research. Hum Exp Toxicol 17(5):263–265. https://doi.org/10.1177/096032719801700509

    Article  CAS  PubMed  Google Scholar 

  139. Calabrese EJ, Baldwin LA (1999) The marginalization of hormesis. Toxicol Pathol 27(2):187–94. https://doi.org/10.1177/019262339902700206

  140. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 5:61. https://doi.org/10.3389/fmed.2018.00061

    Article  PubMed  Google Scholar 

  141. Giuliani C, Pirazzini C, Delledonne M, Xumerle L, Descombes P, Marquis J, Mengozzi G, Monti D, Bellizzi D, Passarino G, Luiselli D, Franceschi C, Garagnani P (2017) Centenarians as extreme phenotypes: an ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mech Ageing Dev 165(Pt B):195–201. https://doi.org/10.1016/j.mad.2017.02.007

    Article  PubMed  Google Scholar 

  142. Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C, Paganelli R (1993) Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 23(9):2375–2378. https://doi.org/10.1002/eji.1830230950

    Article  CAS  PubMed  Google Scholar 

  143. Baggio G, Donazzan S, Monti D, Mari D, Martini S, Gabelli C, Dalla Vestra M, Previato L, Guido M, Pigozzo S, Cortella I, Crepaldi G, Franceschi C (1998) Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J 12(6):433–437. https://doi.org/10.1096/fasebj.12.6.433

    Article  CAS  PubMed  Google Scholar 

  144. Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2(10):1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029

    Article  PubMed  PubMed Central  Google Scholar 

  145. Franceschi C, Bonafè M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16):1717–1720. https://doi.org/10.1016/s0264-410x(99)00513-7

    Article  CAS  PubMed  Google Scholar 

  146. Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M (2015) DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 6:35509–35521

    Article  PubMed  PubMed Central  Google Scholar 

  147. Effros RB (2003) Replicative senescence: the final stage of memory T cell differentiation? Curr HIV Res 1:153–165

    Article  CAS  PubMed  Google Scholar 

  148. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2018) Senescence-associated secretory phenotypes reveal cell- nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Google Scholar 

  149. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Birch J, Passos JF (2017) Targeting the SASP to combat ageing: mitochondria as possible intracellular allies? Bioessays 39(5)

  151. Campisi J (2016) Cellular senescence and lung function during aging. Yin and Yang. Ann Am Thorac Soc 13(Supplement_5):S402

  152. Yarbro JR, Emmons RS, Pence BD (2020) Macrophage immunometabolism and inflammaging: roles of mitochondrial dysfunction, cellular senescence, CD38, and NAD. Immunometabolism 2(3):e200026. https://doi.org/10.20900/immunometab20200026

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    Article  CAS  PubMed  Google Scholar 

  154. Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CT, Ng TP, Larbi A, Wong SC (2018) The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 9(3):266. https://doi.org/10.1038/s41419-018-0327-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Iske J, Seyda M, Heinbokel T, Maenosono R, Minami K, Nian Y, Quante M, Falk CS, Azuma H, Martin F, Passos JF, Niemann CU, Tchkonia T, Kirkland JL, Elkhal A, Tullius SG (2020) Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat Commun 11(1):4289. https://doi.org/10.1038/s41467-020-18039-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Olivieri F, Prattichizzo F, Grillari J, Balistreri CR (2018) Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm 17(2018):9076485. https://doi.org/10.1155/2018/9076485

    Article  Google Scholar 

  157. Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102(4):977–988. https://doi.org/10.1189/jlb.3RI0716-335R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW (2019) Dissecting aging and senescence-current concepts and open lessons. Cells 8(11):1446. https://doi.org/10.3390/cells8111446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C (2020) Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol 42:589–605. https://doi.org/10.1007/s00281-020-00814-z

    Article  PubMed  PubMed Central  Google Scholar 

  160. Peterson CT, Sharma V, Elmén L, Peterson SN (2015) Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 179(3):363–377. https://doi.org/10.1111/cei.12474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20

    Article  PubMed  Google Scholar 

  162. Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes Immun 19:1–15. https://doi.org/10.1038/s41435-021-00126-8

    Article  Google Scholar 

  163. Ragonnaud E, Biragyn A (2021) Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18(1):2. https://doi.org/10.1186/s12979-020-00213-w

    Article  PubMed  PubMed Central  Google Scholar 

  164. DeJong EN, Surette MG, Bowdish DME (2020) The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe 28(2):180–189. https://doi.org/10.1016/j.chom.2020.07.013

    Article  CAS  PubMed  Google Scholar 

  165. Franceschi C, Ostan R, Santoro A (2018) Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr 21(38):329–356. https://doi.org/10.1146/annurev-nutr-082117-051637

    Article  CAS  Google Scholar 

  166. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26(11):1480–1485. https://doi.org/10.1016/j.cub.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  167. Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75(1):129–148. https://doi.org/10.1007/s00018-017-2674-y

    Article  CAS  PubMed  Google Scholar 

  168. Coman V, Vodnar DC (2020) Gut microbiota and old age: modulating factors and interventions for healthy longevity. Exp Gerontol 41:111095. https://doi.org/10.1016/j.exger.2020.111095

    Article  CAS  Google Scholar 

  169. Bulut O, Kilic G, Domínguez-Andrés J, Netea MG (2020) Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 32(12):741–753. https://doi.org/10.1093/intimm/dxaa052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566–1579. https://doi.org/10.1002/1873-3468.13498

    Article  CAS  PubMed  Google Scholar 

  171. Omarjee L, Perrot F, Meilhac O, Mahe G, Bousquet G, Janin A (2020) Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging (Albany NY) 12:26263–26278. https://doi.org/10.18632/aging.202422

    Article  PubMed  Google Scholar 

  172. Salvioli S, Capri M, Valensin S, Tieri P, Monti D, Ottaviani E, Franceschi C (2006) Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr Pharm Des 12(24):3161–3171. https://doi.org/10.2174/138161206777947470

    Article  CAS  PubMed  Google Scholar 

  173. Picca A, Lezza AMS, Leeuwenburgh C, Pesce V, Calvani R, Landi F, Bernabei R, Marzetti E (2017) Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int J Mol Sci 18(5):933. https://doi.org/10.3390/ijms18050933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yang Q, Shu HB (2020) Deciphering the pathways to antiviral innate immunity and inflammation. Adv Immunol 145:1–36. https://doi.org/10.1016/bs.ai.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  175. Burtscher J, Burtscher M, Millet GP (2021) The central role of mitochondrial fitness on antiviral defenses: an advocacy for physical activity during the COVID-19 pandemic. Redox Biol 43:101976. https://doi.org/10.1016/j.redox.2021.101976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Conte M, Martucci M, Chiariello A, Franceschi C, Salvioli S (2020) Mitochondria, immunosenescence and inflammaging: a role for mitokines? Semin Immunopathol 42:607–617. https://doi.org/10.1007/s00281-020-00813-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, Ligotti ME, Zareian N, Accardi G (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol 10:2247. https://doi.org/10.3389/fimmu.2019.02247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pereira B, Xu XN, Akbar AN (2020) Targeting inflammation and immunosenescence to improve vaccine responses in the elderly. Front Immunol 11:583019. https://doi.org/10.3389/fimmu.2020.583019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15(26):3003–3026. https://doi.org/10.2174/138161209789058110

    Article  PubMed  Google Scholar 

  180. Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S (2018) Advances and challenges in geroscience research: an update. Physiol Int 105(4):298–308. https://doi.org/10.1556/2060.105.2018.4.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sierra F, Kohanski R (2017) Geroscience and the trans-NIH Geroscience Interest Group. GSIG Geroscience 39(1):1–5. https://doi.org/10.1007/s11357-016-9954-6

    Article  PubMed  Google Scholar 

  182. Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M (2021) The role of T cells in age-related diseases. Nat Rev Immunol. https://doi.org/10.1038/s41577-021-00557-4

  183. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586. eCollection 2018. https://doi.org/10.3389/fimmu.2018.00586

  184. Gritsenko A, Green JP, Brough D, Lopez-Castejon G (2020) Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 55:15–25. https://doi.org/10.1016/j.cytogfr.2020.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. De Winter G (2015) Aging as disease. Med Health Care Philos 18:237–243. https://doi.org/10.1007/s11019-014-9600-y

    Article  PubMed  Google Scholar 

  186. Janac S, Clarke B, Gems D (2017) Aging: natural or disease? A view from medical textbooks. In: Vaiserman AM (ed) Anti-aging drugs: from basic research to clinical practice. Royal Society of Chemistry, Cambridge (UK), p 2017

    Google Scholar 

  187. Fulop T, Larbi A, Khalil A, Cohen AA, Witkowski JM (2019) Are we ill because we age? Front Physiol 18(10):1508. https://doi.org/10.3389/fphys.2019.01508

    Article  Google Scholar 

  188. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 10(8):1960. https://doi.org/10.3389/fimmu.2017.01960

    Article  CAS  Google Scholar 

  189. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nature Med 26:450–452

    Article  CAS  PubMed  Google Scholar 

  190. Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D’Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A (2020) COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res 32(8):1599–1608. https://doi.org/10.1007/s40520-020-01631-y

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kadambari S, Klenerman P, Pollard AJ (2020) Why the elderly appear to be more severely affected by COVID-19: the potential role of immunosenescence and CMV. Rev Med Virol 30:e2144. https://doi.org/10.1002/rmv.2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV (2020) Remodeling of the immune response with aging: immunosenescence and its potential impact on COVID-19 immune response. Front Immunol 7(11):1748. https://doi.org/10.3389/fimmu.2020.01748

    Article  CAS  Google Scholar 

  193. Pietrobon AJ, Teixeira FME, Sato MN (2020) Immunosenescence and inflammaging: risk factors of severe COVID-19 in older people. Front Immunol 27(11):579220. https://doi.org/10.3389/fimmu.2020.579220

    Article  CAS  Google Scholar 

  194. Akbar AN, Gilroy DW (2020) Aging immunity may exacerbate COVID-19. Science 369(6501):256–257. https://doi.org/10.1126/science.abb0762

    Article  CAS  PubMed  Google Scholar 

  195. Flaherty GT, Hession P, Liew CH, Lim BCW, Leong TK, Lim V, Sulaiman LH (2020) COVID-19 in adult patients with pre-existing chronic cardiac, respiratory and metabolic disease: a critical literature review with clinical recommendations. Trop Dis Travel Med Vaccines 28(6):16. https://doi.org/10.1186/s40794-020-00118-y

    Article  Google Scholar 

  196. Arsun B, Shepherd HS, Claudio F, Luigi F (2020) A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun Ageing 17:23. eCollection 2020. https://doi.org/10.1186/s12979-020-00196-8 

  197. Ostan R, Monti D, Gueresi P, Bussolotto M, Franceschi C, Baggio G (2016) Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci (Lond) 130(19):1711–1725. https://doi.org/10.1042/CS20160004

    Article  PubMed  Google Scholar 

  198. Monti D, Ostan R, Borelli V, Castellani G, Franceschi C (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev 165(Pt B):129–138. https://doi.org/10.1016/j.mad.2016.12.008

    Article  PubMed  Google Scholar 

  199. Moderbacher CR, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, Kato Y, Crotty EG, Kim C, Rawlings SA, Mateus J, Tse LPV, Frazier A, Baric R, Peters B, Greenbaum J, Saphire EO, Smith DM, Sette A, Crotty S (2020) Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183(4):996–1012.e19. Epub 2020 Sep 16. https://doi.org/10.1016/j.cell.2020.09.038

  200. Zheng Y, Liu X, Le W, Xie L, Li H, Wen W, Wang S, Ma S, Huang Z, Ye J, Shi W, Ye Y, Liu Z, Song M, Zhang W, Han JJ, Belmonte JCI, Xiao C, Qu J, Wang H, Liu GH, Su W (2020) A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11(10):740–770. https://doi.org/10.1007/s13238-020-00762-2 

  201. Duggal NA, Niemiro G, Harridge SDR, Simpson RJ, Lord JM (2019) Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 19:563–572. https://doi.org/10.1038/s41577-019-0177-9

    Article  CAS  PubMed  Google Scholar 

  202. Weyh C, Krüger K, Strasser B (2020) Physical activity and diet shape the immune system during aging. Nutrients 12(3):622. https://doi.org/10.3390/nu12030622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Fuellen G, Liesenfeld O, Kowald A, Barrantes I, Bastian M, Simm A, Jansen L, Tietz-Latza A, Quandt D, Franceschi C, Walter M (2020) The preventive strategy for pandemics in the elderly is to collect in advance samples & data to counteract chronic inflammation (inflammaging. Ageing Res Rev 62:101091. https://doi.org/10.1016/j.arr.2020.101091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, Wan W, Tai X (2016) An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res 2016:8426874. https://doi.org/10.1155/2016/8426874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F (2017) Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 40:95–119. https://doi.org/10.1016/j.arr.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  206. Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, Li T, Margolick JB, Pawelec G, Leng SX (2021) Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev 65:101205. https://doi.org/10.1016/j.arr.2020.101205

    Article  CAS  PubMed  Google Scholar 

  207. Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19(6):371–384. https://doi.org/10.1038/s41576-018-0004-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Canadian Institutes of Health Research (CIHR) (No. 106634 and No. PJT-162366) to AK and TF, the Société des médecins de l’Université de Sherbrooke and the Research Center on Aging of the CIUSSS-CHUS, Sherbrooke and the FRQS Audace grant to TF and EF; by the Polish Ministry of Science and Higher Education statutory grant 02–0058/07/262 to JMW; by Agency for Science Technology and Research (A*STAR) to AL. AAC is a Senior Research Fellow of the FRQS, and a member of the FRQS-supported Centre de recherche sur le vieillissement et Centre de recherche du CHUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fulop.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest related to this article, except AAC who is founder and CEO at Oken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulop, T., Larbi, A., Pawelec, G. et al. Immunology of Aging: the Birth of Inflammaging. Clinic Rev Allerg Immunol 64, 109–122 (2023). https://doi.org/10.1007/s12016-021-08899-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08899-6

Keywords