Skip to main content

Advertisement

Log in

Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient’s clinical manifestation of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Athari SS (2019) Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 4:1–19. https://doi.org/10.1038/s41392-019-0079-0

    Article  CAS  Google Scholar 

  2. Network GA (2018) The global asthma report. Auckland, New Zealand

  3. Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA (2018) The concepts of asthma endotypes and phenotypes to guide current and novel treatment strategies. Expert Rev Respir Med 12:733–743. https://doi.org/10.1080/17476348.2018.1505507

    Article  CAS  PubMed  Google Scholar 

  4. Wenzel SE (2012) Asthma phenotypes : the evolution from clinical to molecular approaches. Nat Med 18:716–725. https://doi.org/10.1038/nm.2678

    Article  CAS  PubMed  Google Scholar 

  5. Dhami S, Kakourou A, Asamoah F et al (2017) Allergen immunotherapy for allergic asthma: A systematic review and meta-analysis. Allergy 72:1825–1848. https://doi.org/10.1111/all.13208

    Article  CAS  PubMed  Google Scholar 

  6. Kuruvilla ME, Lee FEH, Lee GB (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 56:219–233. https://doi.org/10.1007/s12016-018-8712-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aun MV, Bonamichi-santos R, Magalhães F et al (2017) Animal models of asthma : utility and limitations. J Asthma Allergy 10:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhakta NR, Woodruff PG (2011) Human asthma phenotypes: from the clinic, to cytokines, and back again. Immunol Rev 242:220–232. https://doi.org/10.1161/CIRCULATIONAHA.110.956839

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ray A, Oriss TB, Wenzel SE (2015) Emerging molecular phenotypes of asthma. Am J Physiol Lung Cell Mol Physiol 308:130–140. https://doi.org/10.1152/ajplung.00070.2014

    Article  CAS  Google Scholar 

  10. Moore WC, Meyers DA, Wenzel SE et al (2010) Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med 181:315–323. https://doi.org/10.1164/rccm.200906-0896OC

    Article  PubMed  Google Scholar 

  11. Siroux V, Basagan X, Boudier A et al (2011) Identifying adult asthma phenotypes using a clustering approach. Eur Respir J 38:310–317. https://doi.org/10.1183/09031936.00120810

    Article  CAS  PubMed  Google Scholar 

  12. Froidure A, Mouthuy J, Durham SR et al (2016) Asthma phenotypes and IgE responses. Eur Respir J 47:304–319. https://doi.org/10.1183/13993003.01824-2014

    Article  CAS  PubMed  Google Scholar 

  13. Green RH, Brightling CE, Woltman G et al (2002) Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 57:875–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haldar P, Pavord ID (2007) Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol 119:1043–1052. https://doi.org/10.1016/j.jaci.2007.02.042

    Article  CAS  PubMed  Google Scholar 

  15. Hekking PPW, Bel EH (2014) Developing and emerging clinical asthma phenotypes. J Allergy Clin Immunol Pr 2:671–680. https://doi.org/10.1016/j.jaip.2014.09.007

    Article  Google Scholar 

  16. Rosenberg HF, Druey KM (2018) Modeling asthma: pitfalls, promises, and the road ahead. J Leukoc Biol 104:41–48. https://doi.org/10.1002/JLB.3MR1117-436R.Modeling

    Article  CAS  PubMed  Google Scholar 

  17. Wenzel SE (2021) Severe adult asthmas: Integrating clinical features, biology, and therapeutics to improve outcomes. Am J Respir Crit Care Med 203:809–821. https://doi.org/10.1164/rccm.202009-3631CI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breiteneder H, Peng YQ, Agache I et al (2020) Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy Eur J Allergy Clin Immunol 75:3039–3068. https://doi.org/10.1111/all.14582

    Article  Google Scholar 

  19. Nials AT, Uddin S (2008) Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 1:213–220. https://doi.org/10.1242/dmm.000323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sagar S, Akbarshahi H, Uller L (2015) Translational value of animal models of asthma: challenges and promises. Eur J Pharmacol 759:272–277. https://doi.org/10.1016/j.ejphar.2015.03.037

    Article  CAS  PubMed  Google Scholar 

  21. Zosky GR, Sly PD (2007) Animal models of asthma. Clin Exp Allergy 37:973–988. https://doi.org/10.1111/j.1365-2222.2007.02740.x

    Article  CAS  PubMed  Google Scholar 

  22. Bates JHT, Rincon M, Irvin CG (2009) Animal models of asthma. Am J Physiol Lung Cell Mol Physiol 297:401–410

    Article  Google Scholar 

  23. Gubernatorova EO, Namakanova OA, Tumanov AV et al (2019) Mouse models of severe asthma for evaluation of therapeutic cytokine targeting. Immunol Lett 207:73–83. https://doi.org/10.1016/j.imlet.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  24. Haspeslagh E, Debeuf N, Hammad H, Lambrecht BN (2017) Murine models of allergic asthma. Methods Mol Biol 1559:121–136. https://doi.org/10.1007/978-1-4939-6786-5

    Article  CAS  PubMed  Google Scholar 

  25. Lambrecht BN, Hammad H, Fahy JV (2019) The cytokines of asthma. Immunity 50:975–991. https://doi.org/10.1016/j.immuni.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  26. Asai-Tajiri Y, Matsumoto K, Fukuyama S et al (2014) Small interfering RNA against CD86 during allergen challenge blocks experimental allergic asthma. Resp Res 15:1–11. https://doi.org/10.1186/s12931-014-0132-z

    Article  CAS  Google Scholar 

  27. Ano S, Morishima Y, Ishii Y et al (2013) Transcription factors GATA-3 and RORγt are important for determining the phenotype of allergic airway inflammation in a murine model of asthma. J Immunol 190:1056–1065. https://doi.org/10.4049/jimmunol.1202386

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Liu S, Verma M et al (2017) Mechanism of TH2/TH17-predominant and neutrophilic TH2/TH17-low subtypes of asthma. J Allergy Clin Immunol 139:1548–1558. https://doi.org/10.1016/j.jaci.2016.08.032

    Article  CAS  PubMed  Google Scholar 

  29. Anderson GP (2008) Endotyping asthma : new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372:1107–1119

    Article  PubMed  Google Scholar 

  30. Platts-Mills TAE, Schuyler AJ, Erwin EA et al (2016) IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol 137:1662–1670. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madore AM, Laprise C (2010) Immunological and genetic aspects of asthma and allergy. J Asthma Allergy 3:107–121. https://doi.org/10.2147/JAA.S8970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murdoch JR, Lloyd CM (2010) Chronic inflammation and asthma. Mutat Res - Fundam Mol Mech Mutagen 690:24–39. https://doi.org/10.1016/j.mrfmmm.2009.09.005

    Article  CAS  Google Scholar 

  33. Humeniuk P, Dubiela P, Hoffmann-Sommergruber K (2017) Dendritic cells and their role in allergy: Uptake, proteolytic processing and presentation of allergens. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071491

  34. Reynolds G, Haniffa M (2015) Human and mouse mononuclear phagocyte networks: a tale of two species? Front Immunol 6:1–15. https://doi.org/10.3389/fimmu.2015.00330

    Article  CAS  Google Scholar 

  35. Lombardi V, Singh AK, Akbari O (2010) The role of costimulatory molecules in allergic disease and asthma. Int Arch Allergy Immunol 151:179–189

    Article  CAS  PubMed  Google Scholar 

  36. Poulsen LK, Hummelshoj L (2007) Triggers of IgE class switching and allergy development. Ann Med 39:440–456. https://doi.org/10.1080/07853890701449354

    Article  CAS  PubMed  Google Scholar 

  37. McBrien CN, Menzies-Gow A (2017) The biology of eosinophils and their role in asthma. Front Med 4:1–14. https://doi.org/10.3389/fmed.2017.00093

    Article  Google Scholar 

  38. Wypych TP, Marzi R, Wu GF et al (2018) Role of B cells in T helper cell responses in a mouse model of asthma. J Allergy Clin Immunol 141:1395–1410. https://doi.org/10.1016/j.jaci.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  39. Deckers J, Madeira FB, Hammad H (2013) Innate immune cells in asthma. Trends Immunol 34:540–547. https://doi.org/10.1016/j.it.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  40. Brown JM, Wilson TM, Metcalfe DD (2008) The mast cell and allergic diseases: Role in pathogenesis and implications for therapy. Clin Exp Allergy 38:4–18. https://doi.org/10.1111/j.1365-2222.2007.02886.x

    Article  CAS  PubMed  Google Scholar 

  41. De Vries MP, Van Den Bemt L, Van Der Mooren FM et al (2005) The prevalence of house dust mite (HDM) allergy and the use of HDM-impermeable bed covers in a primary care population of patients with persistent asthma in the Netherlands. Prim Care Respir J 14:210–214. https://doi.org/10.1016/j.pcrj.2005.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maddur MS, Sharma M, Hegde P et al (2014) Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nat Commun 5:1–13. https://doi.org/10.1038/ncomms5092

    Article  CAS  Google Scholar 

  43. Chauhan PS, Singh DK, Dash D, Singh R (2018) Intranasal curcumin regulates chronic asthma in mice by modulating NF-ĸB activation and MAPK signaling. Phytomedicine 51:29–38. https://doi.org/10.1016/j.phymed.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  44. Yang N, Shang YX (2019) Epigallocatechin gallate ameliorates airway inflammation by regulating Treg/Th17 imbalance in an asthmatic mouse model. Int Immunopharmacol 72:422–428. https://doi.org/10.1016/j.intimp.2019.04.044

    Article  CAS  PubMed  Google Scholar 

  45. Lombardi C, Savi E, Ridolo E et al (2017) Is allergic sensitization relevant in severe asthma? Which allergens may be culprit? World Allergy Organ J 10:1–7. https://doi.org/10.1186/s40413-016-0138-8

    Article  CAS  Google Scholar 

  46. Tung HY, Li E, Landers C et al (2018) Advances and evolving concepts in allergic asthma. Semin Respir Crit Care Med 39:64–81. https://doi.org/10.1055/s-0037-1607981

    Article  PubMed  Google Scholar 

  47. Walker ML, Holt KE, Anderson GP et al (2014) Elucidation of pathways driving asthma pathogenesis: development of a systems-level analytic strategy. Front Immunol 5:1–16. https://doi.org/10.3389/fimmu.2014.00447

    Article  CAS  Google Scholar 

  48. Bartlett NW, Walton RP, Edwards MR et al (2008) Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 14:199–204. https://doi.org/10.1038/nm1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Essilfie AT, Simpson JL, Dunkley ML et al (2012) Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma. Thorax 67:588–599. https://doi.org/10.1136/thoraxjnl-2011-200160

  50. Diaz-Sanchez D, Dotson AR, Takenaka H, Saxon A (1994) Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest 94:1417–1425. https://doi.org/10.1172/JCI117478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Acciani TH, Brandt EB, Khurana Hershey GK, Le Cras TD (2013) Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin Exp Allergy 43:1406–1418. https://doi.org/10.1111/cea.12200

    Article  CAS  PubMed  Google Scholar 

  52. Alberg T, Cassee FR, Groeng EC et al (2009) Fine ambient particles from various sites in Europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model. J Toxicol Environ Heal A 72:1–13. https://doi.org/10.1080/15287390802414471

    Article  CAS  Google Scholar 

  53. Brandt EB, Bolcas PE, Ruff BP, Khurana Hershey GK (2020) TSLP contributes to allergic airway inflammation induced by diesel exhaust particle exposure in an experimental model of severe asthma. Clin Exp Allergy 50:121–124. https://doi.org/10.1111/cea.13512

    Article  CAS  PubMed  Google Scholar 

  54. Xu X, Zhang J, Yang X et al (2020) The role and potential pathogenic mechanism of particulate matter in childhood asthma: a review and perspective. J Immunol Res 2:1–8. https://doi.org/10.1155/2020/8254909

    Article  CAS  Google Scholar 

  55. Achakulwisut P, Brauer M, Hystad P, Anenberg SC (2019) Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO 2 pollution: estimates from global datasets. Lancet Planet Heal 3:166–178. https://doi.org/10.1016/S2542-5196(19)30046-4

    Article  Google Scholar 

  56. Duffey H, Anderson WC (2019) It’s time to start phenotyping our patients with asthma. Immunol Allergy Clin N Am 39:561–572. https://doi.org/10.1016/j.iac.2019.07.009

    Article  Google Scholar 

  57. Skloot GS (2016) Asthma phenotypes and endotypes: a personalized approach to treatment. Curr Opin Pulm Med 22:3–9. https://doi.org/10.1097/MCP.0000000000000225

    Article  CAS  PubMed  Google Scholar 

  58. Lötvall J, Akdis CA, Bacharier LB et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127:355–360. https://doi.org/10.1016/j.jaci.2010.11.037

    Article  PubMed  Google Scholar 

  59. Agache I, Akdis CA (2019) Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest 129:1493–1503. https://doi.org/10.1172/JCI124611

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56. https://doi.org/10.1038/ni.3049

    Article  CAS  PubMed  Google Scholar 

  61. Haldar P, Pavord ID, Shaw DE et al (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178:218–224. https://doi.org/10.1164/rccm.200711-1754OC

    Article  PubMed  Google Scholar 

  62. GINA (2021) Global Strategy for Asthma Management and Prevention

  63. Karrasch S, Linde K, Rücker G et al (2017) Accuracy of FENO for diagnosing asthma: a systematic review. Thorax 72:109–116. https://doi.org/10.1136/thoraxjnl-2016-208704

    Article  PubMed  Google Scholar 

  64. Maltby S, Gibson PG, Reddel HK et al (2020) Severe Asthma Toolkit: an online resource for multidisciplinary health professionals - Needs assessment, development process and user analytics with survey feedback. BMJ Open 10. https://doi.org/10.1136/bmjopen-2019-032877

  65. Fahy JV, Wong H, Liu J, Boushey HA (1995) Comparison of samples collerted by sputum indurtion and bronchoscopy from asthmatic and healthy subjects. Am J Respir Crit Care Med 152:53–58

    Article  CAS  PubMed  Google Scholar 

  66. Robinson DS, Hamid Q, Ying S et al (1992) Predominant Th2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326:298–304

    Article  CAS  PubMed  Google Scholar 

  67. Caminati M, Le PD, Bagnasco D, Canonica GW (2018) Type 2 immunity in asthma. World Allergy Organ J 11:1–10. https://doi.org/10.1186/s40413-018-0192-5

    Article  CAS  Google Scholar 

  68. Colgan JD, Hankel IL (2010) Signaling pathways critical for allergic airway inflammation. Curr Opin Allergy Clin Immunol 10:42–47. https://doi.org/10.1097/ACI.0b013e328334f642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gon Y, Hashimoto S (2018) Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int 67:12–17. https://doi.org/10.1016/j.alit.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  70. Salter BM, Sehmi R (2017) Hematopoietic processes in eosinophilic asthma. Chest 152:410–416. https://doi.org/10.1016/j.chest.2017.01.021

    Article  PubMed  Google Scholar 

  71. Southam DS, Widmer N, Ellis R et al (2005) Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J Allergy Clin Immunol 115:95–102. https://doi.org/10.1016/j.jaci.2004.09.022

    Article  CAS  PubMed  Google Scholar 

  72. Guida G, Riccio AM (2019) Immune induction of airway remodeling. Semin Immunol 46:1–22. https://doi.org/10.1016/j.smim.2019.101346

    Article  CAS  Google Scholar 

  73. Toledo AC, Sakoda CPP, Perini A et al (2013) Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br J Pharmacol 168:1736–1749. https://doi.org/10.1111/bph.12062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee JJ, Dimina D, Macias MMP et al (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science (80- ) 305:1773–1776. https://doi.org/10.1126/science.1099472

  75. Thiriou D, Morianos I, Xanthou G, Samitas K (2017) Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int Immunopharmacol 48:43–54. https://doi.org/10.1016/j.intimp.2017.04.027

    Article  CAS  PubMed  Google Scholar 

  76. Komi DEA, Mortaz E, Amani S et al (2020) The role of mast cells in IgE-independent lung diseases. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-020-08779-5

    Article  PubMed  PubMed Central  Google Scholar 

  77. Komi DEA, Bjermer L (2018) Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 56:234–247. https://doi.org/10.1007/s12016-018-8720-1

    Article  CAS  Google Scholar 

  78. Kubo M (2017) Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev 278:162–172

    Article  CAS  PubMed  Google Scholar 

  79. Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281:154–168. https://doi.org/10.1111/imr.12619

    Article  CAS  PubMed  Google Scholar 

  80. He Z, Song J, Hua J et al (2018) Mast cells are essential intermediaries in regulating IL-33/ST2 signaling for an immune network favorable to mucosal healing in experimentally inflamed colons. Cell Death Dis 9. https://doi.org/10.1038/s41419-018-1223-4

  81. Hsu CL, Chhiba KD, Krier-Burris R et al (2020) Allergic inflammation is initiated by IL-33–dependent crosstalk between mast cells and basophils. PLoS One 15:1–21. https://doi.org/10.1371/journal.pone.0226701

    Article  CAS  Google Scholar 

  82. Van Der Ploeg EK, Carreras Mascaro A, Huylebroeck D et al (2020) Group 2 innate lymphoid cells in human respiratory disorders. J Innate Immun 12:47–62. https://doi.org/10.1159/000496212

    Article  CAS  PubMed  Google Scholar 

  83. Cherrier DE, Serafini N, Di Santo JP (2018) Innate lymphoid cell development: a T cell perspective. Immunity 48:1091–1103. https://doi.org/10.1016/j.immuni.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  84. Vivier E, Artis D, Colonna M et al (2018) Innate lymphoid cells: 10 years on. Cell 174:1054–1066. https://doi.org/10.1016/j.cell.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  85. Guia S, Narni-Mancinelli E (2020) Helper-like innate lymphoid cells in humans and mice. Trends Immunol 41:436–452. https://doi.org/10.1016/j.it.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  86. Yasuda Y, Nagano T, Kobayashi K, Nishimura Y (2020) Group 2 innate lymphoid cells and the house dust mite-induced asthma mouse model. Cells 9. https://doi.org/10.3390/cells9051178

  87. Hoyler T, Klose CSN, Souabni A et al (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634–648. https://doi.org/10.1016/j.immuni.2012.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen R, Smith SG, Salter B et al (2017) Allergen-induced increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma. Am J Respir Crit Care Med 196:700–712. https://doi.org/10.1164/rccm.201612-2427OC

    Article  CAS  PubMed  Google Scholar 

  89. Bonser L, Erle D (2017) Airway mucus and asthma: the role of MUC5AC and MUC5B. J Clin Med 6:112. https://doi.org/10.3390/jcm6120112

    Article  CAS  PubMed Central  Google Scholar 

  90. Papi A, Brightling C, Pedersen SE, Reddel HK (2018) Asthma Lancet 391:783–800. https://doi.org/10.1016/S0140-6736(17)33311-1

    Article  PubMed  Google Scholar 

  91. Humbles AA, Lloyd CM, McMillan SJ et al (2004) A critical role for eosinophils in allergic airways remodeling. Science (80- ) 305:1776–1779. https://doi.org/10.1126/science.1100283

  92. Cho JY, Miller M, Baek KJ et al (2004) Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest 113:551–560. https://doi.org/10.1172/JCI19133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leitch VD, Strudwick XL, Matthaei KI et al (2009) IL-5-overexpressing mice exhibit eosinophilia and altered wound healing through mechanisms involving prolonged inflammation. Immunol Cell Biol 87:131–140. https://doi.org/10.1038/icb.2008.72

    Article  CAS  PubMed  Google Scholar 

  94. Tanaka H, Komai M, Nagao K et al (2004) Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Resp Cell Mol Biol 31:62–68. https://doi.org/10.1165/rcmb.2003-0305OC

    Article  CAS  Google Scholar 

  95. De VV, Vanoirbeek JAJ, Luyts K et al (2010) Choice of mouse strain influences the outcome in a mouse model of chemical-induced asthma. PLoS One 5:1–9. https://doi.org/10.1371/journal.pone.0012581

    Article  CAS  Google Scholar 

  96. Kumar RK, Foster PS (2012) Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness? Front Physiol 1–7. https://doi.org/10.3389/fphys.2012.00312

  97. Harb H, Chatila TA (2020) Mechanisms of dupilumab. Clin Exp Allergy 50:5–14. https://doi.org/10.1111/cea.13491

    Article  CAS  PubMed  Google Scholar 

  98. Akdis M, Aab A, Altunbulakli C et al (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol 138:984–1010. https://doi.org/10.1016/j.jaci.2016.06.033

    Article  CAS  PubMed  Google Scholar 

  99. Corren J, Lemanske RF, Hanania NA et al (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365:1088–1098

    Article  CAS  PubMed  Google Scholar 

  100. Santana FPR, Da Silva RC, Grecco SDS et al (2019) Inhibition of MAPK and STAT3-SOCS3 by Sakuranetin attenuated chronic allergic airway inflammation in mice. Med Inflamm 2019:1–15. https://doi.org/10.1155/2019/1356356

    Article  CAS  Google Scholar 

  101. Tamiya T, Ichiyama K, Kotani H et al (2013) Smad2/3 and IRF4 play a cooperative role in IL-9–producing T cell induction. J Immunol 191:2360–2371. https://doi.org/10.4049/jimmunol.1301276

    Article  CAS  PubMed  Google Scholar 

  102. Koch S, Sopel N, Finotto S (2017) Th9 and other IL-9-producing cells in allergic asthma. Sem Immunopathol 39:55–68. https://doi.org/10.1007/s00281-016-0601-1

    Article  CAS  Google Scholar 

  103. Wilhelm C, Hirota K, Stieglitz B et al (2012) Interleukin 9 fate reporter reveals induction of innate IL-9 response in lung inflammation. Nat Immunol 12:1071–1077. https://doi.org/10.1038/ni.2133.Interleukin

    Article  Google Scholar 

  104. Hew M, Menzies-Gow A, Hull JH et al (2020) Systematic assessment of difficult-to-treat asthma: Principles and Perspectives. J Allergy Clin Immunol Pr. https://doi.org/10.1016/j.jaip.2020.02.036

    Article  Google Scholar 

  105. Wang W, Li Y, Lv Z et al (2018) Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol 201:2221–2231. https://doi.org/10.4049/jimmunol.1800709

    Article  CAS  PubMed  Google Scholar 

  106. Walker JA, McKenzie ANJ (2018) TH2 cell development and function. Nat Rev Immunol 18:121–133. https://doi.org/10.1038/nri.2017.118

    Article  CAS  PubMed  Google Scholar 

  107. Domingo C, Palomares O, Sandham DA et al (2018) The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation. Resp Res 19:1–8. https://doi.org/10.1186/s12931-018-0893-x

    Article  CAS  Google Scholar 

  108. Xue L, Salimi M, Panse I et al (2014) Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 133. https://doi.org/10.1016/j.jaci.2013.10.056

  109. Gazi L, Gyles S, Rose J et al (2005) Delta12-Prostaglandin D2 is a potent and selective CRTH2 receptor agonist and causes activation of human eosinophils and Th2 lymphocytes. Prostaglandins Other Lipid Mediat 75:153–167. https://doi.org/10.1016/j.prostaglandins.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  110. Fahy JV (2015) Type 2 inflammation in asthma — present in most, absent in many. Nat Rev Immunol 15:57–65. https://doi.org/10.1038/nri3786.Type

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Foster PS, Maltby S, Rosenberg HF et al (2017) Modeling Th2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 278:20–40. https://doi.org/10.1111/imr.12549.Modeling

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang Y, Yang M, Cho K et al (2008) Study of a BALB/c mouse model for allergic asthma. Toxicol Res 24:253–261

    Article  PubMed  PubMed Central  Google Scholar 

  113. Canning BJ, Chou Y (2008) Using guinea pigs in studies relevant to asthma and COPD. Pulm Pharmacol Ther 21:1–36. https://doi.org/10.1016/j.pupt.2008.01.004.Using

    Article  Google Scholar 

  114. Brusselle GG, Kips JC, Tavernier JH et al (1994) Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 24:73–80. https://doi.org/10.1111/j.1365-2222.1994.tb00920.x

    Article  CAS  PubMed  Google Scholar 

  115. Chen BL, Qiu Y, Bai C et al (2018) Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL - 4R α-Jak1-STAT6 and Jagged1 / Jagged2 - Notch1 / Notch2 pathways in asthmatic mice. Clin Exp Allergy 48:1494–1508. https://doi.org/10.1111/cea.13258

    Article  CAS  PubMed  Google Scholar 

  116. Serra MF, Cotias AC, Pão CRR et al (2018) Repeated allergen exposure in A/J mice causes steroid-insensitive asthma via a defect in glucocorticoid receptor bioavailability. J Immunol 201:851–860. https://doi.org/10.4049/jimmunol.1700933

    Article  CAS  PubMed  Google Scholar 

  117. Shinagawa K, Kojima M (2003) Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med 168:959–967. https://doi.org/10.1164/rccm.200210-1188OC

    Article  PubMed  Google Scholar 

  118. Barrett NA, Maekawa A, Rahman OM et al (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182:1119–1128. https://doi.org/10.4049/jimmunol.182.2.1119

    Article  CAS  PubMed  Google Scholar 

  119. Chang YS, Kim YK, Bahn JW et al (2005) Comparison of asthma phenotypes using different sensitizing protocols in mice. Korean J Intern Med 20:152–158. https://doi.org/10.3904/kjim.2005.20.2.152

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kim DI, Song MK, Lee K (2019) Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes. BMC Pulm Med 19:1–11. https://doi.org/10.1186/s12890-019-1001-9

    Article  CAS  Google Scholar 

  121. Barnes PJ (2010) Inhaled corticosteroids Pharmaceuticals 3:514–540. https://doi.org/10.3390/ph3030514

    Article  CAS  PubMed  Google Scholar 

  122. Peters MC, Ringel L, Dyjack N et al (2019) A transcriptomic method to determine airway immune dysfunction in T2-high and T2-low asthma. Am J Respir Crit Care Med 199:465–477. https://doi.org/10.1164/rccm.201807-1291OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Canonica GW, Ferrando M, Baiardini I et al (2018) Asthma: personalized and precision medicine. Curr Opin Allergy Clin Immunol 18:51–58. https://doi.org/10.1097/ACI.0000000000000416

    Article  PubMed  Google Scholar 

  124. Fahy JV, Fleming HE, Wong HH et al (1997) The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med 155:1828–1834. https://doi.org/10.1164/ajrccm.155.6.9196082

    Article  CAS  PubMed  Google Scholar 

  125. Garcia G, Magnan A, Chiron R et al (2013) A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma. Chest 144:411–419. https://doi.org/10.1378/chest.12-1961

    Article  CAS  PubMed  Google Scholar 

  126. Corren J, Parnes JR, Wang L et al (2017) Tezepelumab in adults with uncontrolled asthma. N Engl J Med 377:936–946. https://doi.org/10.1056/NEJMoa1704064

    Article  CAS  PubMed  Google Scholar 

  127. Wenzel S, Ford L, Pearlman D et al (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368:2455–2466. https://doi.org/10.1056/NEJMoa1304048

    Article  CAS  PubMed  Google Scholar 

  128. Ortega HG, Liu MC, Pavord ID et al (2014) Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 371:1198–1207. https://doi.org/10.1056/NEJMoa1403290

    Article  CAS  PubMed  Google Scholar 

  129. Albers FC, Papi A, Taillé C et al (2019) Mepolizumab reduces exacerbations in patients with severe eosinophilic asthma, irrespective of body weight/body mass index: Meta-analysis of MENSA and MUSCA. Resp Res 20:1–10. https://doi.org/10.1186/s12931-019-1134-7

    Article  CAS  Google Scholar 

  130. Dávila González I, Moreno Benítez F, Quirce S (2019) Benralizumab: a new approach for the treatment of severe eosinophilic asthma. J Investig Allergol Clin Immunol 29:84–93. https://doi.org/10.18176/jiaci.0385

  131. Ibrahim H, O’Sullivan R, Casey D et al (2019) The effectiveness of Reslizumab in severe asthma treatment: a real-world experience. Resp Res 20:1–5. https://doi.org/10.1186/s12931-019-1251-3

    Article  CAS  Google Scholar 

  132. Panettieri RA, Sjöbring U, Péterffy AM et al (2018) Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Resp Med 6:511–525. https://doi.org/10.1016/S2213-2600(18)30184-X

    Article  CAS  Google Scholar 

  133. Apter AJ (2019) The tralokinumab story: nothing is ever simple. J Allergy Clin Immunol 143:1336–1338. https://doi.org/10.1016/j.jaci.2018.12.1005

    Article  PubMed  Google Scholar 

  134. Agache I, Beltran J, Akdis C et al (2020) Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. Allergy 75:1023–1042. https://doi.org/10.1111/all.14221

    Article  CAS  PubMed  Google Scholar 

  135. Rodrigues APD, Bortolozzo ASS, Arantes-Costa FM et al (2019) A plant proteinase inhibitor from enterolobium contortisiliquum attenuates airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma. Histol Histopathol 34:537–552. https://doi.org/10.14670/HH-18-059

  136. Prado CM, Yano L, Rocha G et al (2011) Effects of inducible nitric oxide synthase inhibition in bronchial vascular remodeling-induced by chronic allergic pulmonary inflammation. Exp Lung Res 37:259–268. https://doi.org/10.3109/01902148.2010.538289

    Article  CAS  PubMed  Google Scholar 

  137. dos Santos TM, Righetti RF, Camargo L, do N et al (2018) Effect of anti-IL17 antibody treatment alone and in combination with Rho-kinase inhibitor in a murine model of asthma. Front Physiol 9:1–19. https://doi.org/10.3389/fphys.2018.01183

    Article  Google Scholar 

  138. Shore SA (2007) Obesity and asthma: Lessons from animal models. J Appl Physiol 102:516–528. https://doi.org/10.1152/japplphysiol.00847.2006

    Article  CAS  PubMed  Google Scholar 

  139. Peters U, Dixon A, Forno E (2018) Obesity and asthma. J Allergy Clin Immunol 141:1169–1179. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Polosa R, Thomson NC (2013) Smoking and asthma: dangerous liaisons. Eur Resp J 41:716–725. https://doi.org/10.1183/09031936.00073312

    Article  CAS  Google Scholar 

  141. Mohanan S, Tapp H, McWilliams A, Dulin M (2014) Obesity and asthma: pathophysiology and implications for diagnosis and management in primary care. Exp Biol Med 239:1531–1540. https://doi.org/10.1177/1535370214525302

    Article  CAS  Google Scholar 

  142. Al-Alwan A, Bates JHT, Chapman DG et al (2014) The nonallergic asthma of obesity: a matter of distal lung compliance. Am J Respir Crit Care Med 189:1494–1502. https://doi.org/10.1164/rccm.201401-0178OC

    Article  PubMed  PubMed Central  Google Scholar 

  143. Jonckheere AC, Bullens DMA, Seys SF (2019) Innate lymphoid cells in asthma: Pathophysiological insights from murine models to human asthma phenotypes. Curr Opin Allergy Clin Immunol 19:53–60. https://doi.org/10.1097/ACI.0000000000000497

    Article  PubMed  Google Scholar 

  144. Peters-Golden M, Swern A, Bird SS et al (2006) Influence of body mass index on the response to asthma controller agents. Eur Resp J 27:495–503. https://doi.org/10.1183/09031936.06.00077205

    Article  CAS  Google Scholar 

  145. Zhu L, Chen X, Chong L et al (2019) Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway. Int Immunol 67:396–407. https://doi.org/10.1016/j.intimp.2018.12.030

    Article  CAS  Google Scholar 

  146. Dixon AE, Pratley RE, Forgione PM et al (2011) Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control and inflammation. J Allergy Clin Immunol 128:508–515. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Spears M, McSharry C, Thomson NC (2006) Peroxisome proliferator-activated receptor-g agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy 36:1494–1504

    Article  CAS  PubMed  Google Scholar 

  148. Ray A, Kolls JK (2017) Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol 38:942–954. https://doi.org/10.1016/j.it.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hadebe S, Kirstein F, Fierens K et al (2015) Microbial ligand costimulation drives neutrophilic steroid-refractory asthma. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0134219

    Article  CAS  Google Scholar 

  150. Barnes PJ (2018) Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 18:454–466. https://doi.org/10.1038/s41577-018-0006-6

    Article  CAS  PubMed  Google Scholar 

  151. Pelaia G, Vatrella A, Busceti MT et al (2015) Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediat Inflamm 2015:1–8

    Article  Google Scholar 

  152. Gao H, Ying S, Dai Y (2017) Pathological roles of neutrophil-mediated inflammation in asthma and its potential for therapy as a target. J Immunol Res. https://doi.org/10.1155/2017/3743048

  153. Kunkel SL, Standiford T, Kasahara K, Strieter RM (1991) Interleukin-8 (IL-8): The major neutrophil chemotactic factor in the lung. Exp Lung Res 17:17–23. https://doi.org/10.3109/01902149109063278

    Article  CAS  PubMed  Google Scholar 

  154. Liang SC, Long AJ, Bennett F et al (2007) An IL-17F/A Heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179:7791–7799. https://doi.org/10.4049/jimmunol.179.11.7791

    Article  CAS  PubMed  Google Scholar 

  155. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40:1830–1835. https://doi.org/10.1002/eji.201040391

    Article  CAS  PubMed  Google Scholar 

  156. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  157. Gao W, Han GJ, Zhu YJ et al (2020) Clinical characteristics and biomarkers analysis of asthma inflammatory phenotypes. Biomark Med 14:211–222. https://doi.org/10.2217/bmm-2019-0487

    Article  CAS  PubMed  Google Scholar 

  158. Zhou L, Lopes JE, Chong MMW et al (2008) TGF-β induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORγt function. Nature 453:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238. https://doi.org/10.1038/nature04753

    Article  CAS  PubMed  Google Scholar 

  160. Wilson RH, Whitehead GS, Nakano H et al (2009) Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med 180:720–730. https://doi.org/10.1164/rccm.200904-0573OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nissen G, Hollaender H, Tang FSM et al (2018) Tumstatin fragment selectively inhibits neutrophil infiltration in experimental asthma exacerbation. Clin Exp Allergy 48:1483–1493. https://doi.org/10.1111/cea.13236

    Article  CAS  PubMed  Google Scholar 

  162. Camargo L, do N, Righetti RF, Aristóteles LR de CRB, et al (2018) Effects of anti-IL-17 on inflammation, remodeling, and oxidative stress in an experimental model of asthma exacerbated by LPS. Front Immunol 8:1–14. https://doi.org/10.3389/fimmu.2017.01835

    Article  CAS  Google Scholar 

  163. Liang L, Hur J, Kang JY et al (2018) Effect of the anti-il-17 antibody on allergic inflammation in an obesity-related asthma model. Korean J Intern Med 33:1210–1223. https://doi.org/10.3904/kjim.2017.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Belvisi MG, Baker K, Malloy N et al (2018) Modelling the asthma phenotype: impact of cigarette smoke exposure. Resp Res 19:1–11. https://doi.org/10.1186/s12931-018-0799-7

    Article  CAS  Google Scholar 

  165. Wong EHC, Porter JD, Edwards MR, Johnston SL (2014) The role of macrolides in asthma: Current evidence and future directions. Lancet Resp Med 2:657–670. https://doi.org/10.1016/S2213-2600(14)70107-9

    Article  CAS  Google Scholar 

  166. Fujimoto M, Serada S, Mihara M et al (2008) Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum 58:3710–3719. https://doi.org/10.1002/art.24126

    Article  CAS  PubMed  Google Scholar 

  167. Busse WW, Holgate S, Kerwin E et al (2013) Study of Brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188:1294–1302. https://doi.org/10.1164/rccm.201212-2318OC

    Article  CAS  PubMed  Google Scholar 

  168. Gu ZW, Wang YX, Cao ZW (2017) Neutralization of interleukin-17 suppresses allergic rhinitis symptoms by downregulating Th2 and Th17 responses and upregulating the Treg response. Oncotarget 8:22361–22369

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zhu L, Ciaccio CE, Casale TB (2018) Potential new targets for drug development in severe asthma. World Allergy Organ J 11:1–9. https://doi.org/10.1186/s40413-018-0208-1

    Article  CAS  Google Scholar 

  170. Finotto S, Neurath MF, Glickman JN et al (2002) Development of spontaneous airway changes consistent with human asthma in mice lacking. T-bet. Science (80- ) 295:336–338. https://doi.org/10.1126/science.1065544

  171. Ding F, Fu Z, Liu B (2018) Lipopolysaccharide exposure alleviates asthma in mice by regulating Th1/Th2 and Treg/Th17 balance. Med Sci Monit 24:3220–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang M, Kumar RK, Foster PS (2009) Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-γ and TLR4/MyD88 pathways. J Immunol 182:5107–5115. https://doi.org/10.4049/jimmunol.0803468

    Article  CAS  PubMed  Google Scholar 

  173. Duechs MJ, Tilp C, Tomsic C et al (2014) Development of a novel severe triple allergen asthma model in mice which is resistant to dexamethasone and partially resistant to TLR7 and TLR9 agonist treatment. PLoS One 9. https://doi.org/10.1371/journal.pone.0091223

  174. Al-Harbi NO, Nadeem A, Ahmad SF et al (2019) Sulforaphane treatment reverses corticosteroid resistance in a mixed granulocytic mouse model of asthma by upregulation of antioxidants and attenuation of Th17 immune responses in the airways. Eur J Pharmacol 855:276–284. https://doi.org/10.1016/j.ejphar.2019.05.026

    Article  CAS  PubMed  Google Scholar 

  175. Ntontsi P, Loukides S, Bakakos P et al (2017) Clinical, functional and inflammatory characteristics in patients with pauci-granulocytic phenotypes. Allergy 72:1761–1767. https://doi.org/10.1111/ijlh.12426

    Article  CAS  PubMed  Google Scholar 

  176. Tliba O, Panettieri RA (2019) Paucigranulocytic asthma: the uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 143:1287–1294. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  177. Hastie AT, Moore WC, Li H et al (2013) Biomarker surrogates do not accurately predict sputum eosinophils and neutrophils in asthma. J Allergy Clin Immunol 132:72–80. https://doi.org/10.1161/CIRCULATIONAHA.110.956839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Amrani Y, Tliba O, Deshpande DA et al (2004) Bronchial hyperresponsiveness: insights into new signaling molecules. Curr Opin Pharmacol 4:230–234. https://doi.org/10.1016/j.coph.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  179. Demarche S, Schleich F, Henket M et al (2016) Detailed analysis of sputum and systemic inflammation in asthma phenotypes: are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm Med 16:1–13. https://doi.org/10.1186/s12890-016-0208-2

    Article  CAS  Google Scholar 

  180. Panettieri RA (2016) Neutrophilic and pauci-immune phenotypes in severe asthma. Immunol Allergy Clin North Am 36:569–579. https://doi.org/10.1016/j.iac.2016.03.007

    Article  PubMed  Google Scholar 

  181. Hirota JA, Nguyen TTB, Schaafsma D et al (2009) Airway smooth muscle in asthma: Phenotype plasticity and function. Pulm Pharmacol Ther 22:370–378. https://doi.org/10.1016/j.pupt.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  182. Kippelen P, Anderson SD, Hallstrand TS (2018) Mechanisms and biomarkers of exercise-induced bronchoconstriction. Immunol Allergy Clin North Am 38(2)165–182 https://doi.org/10.1016/j.iac.2018.01.008

  183. Ban GY, Cho K, Kim SH, Yoon MK, Kim JH, Lee HY, Shin YS, Ye YM, Cho JY, Park HS (2017) Metabolomic analysis identifies potential diagnostic biomarkers for aspirin-exacerbated respiratory disease. Clin Exp Allergy 47(1):37–47. https://doi.org/10.1111/cea.12797

    Article  CAS  PubMed  Google Scholar 

  184. Becker KL, Gresnigt MS, Smeekens SP, Jacobs CW, Magis-Escurra C, Jaeger M, Wang X, Lubbers R, Oosting M, Joosten LA, Netea MG, Reijers MH, van de VeerdonkFL, (2015) Pattern recognition pathways leading to a Th2 cytokine bias in allergic bronchopulmonary aspergillosis patients. Clin Exp Allergy 45(2):423–437. https://doi.org/10.1111/cea.12354

    Article  CAS  PubMed  Google Scholar 

  185. Henderson Jr WR, Tang LO, Chu SJ, Tsao SM, Chiang GK, Jones F, Jonas M, Pae C, Wang H, Chi EY (2002) A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 165(1)108-116. https://doi.org/10.1164/ajrccm.165.1.2105051

  186. Yu QL, Chen Z (2018) Establishment of different experimental asthma models in mice. Exp Ther Med. https://doi.org/10.3892/etm.2018.5721

  187. Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS, McGarry MP, Wang H, O’Neill KR, Colbert DC, Colby TV, Shen H, Blackburn MR, Irvin CC, Lee JJ, Lee NA (2007) Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol 178(12):7879–7889. https://doi.org/10.4049/jimmunol.178.12.7879

    Article  CAS  PubMed  Google Scholar 

  188. Beavitt SJ, Harder KW, Kemp JM, Jones J, Quilici C, Casagranda F, Lam E, Turner D, Brennan S, Sly PD, Tarlinton DM, Anderson GP, Hibbs ML (2005) Lyn-deficient mice develop severe persistent asthma: Lyn is a critical negative regulator of Th2 immunity. J Immunol 175(3)1867–1875. https://doi.org/10.4049/jimmunol.175.3.1867

  189. Choi IW, Kim YS, Ko HM, Im SY, Kim JH, You HJ, Lee YC, Lee JH, Lee HK, Park YM (2005) TNF-α induces the late-phase airway hyperresponsiveness and airway inflammation through cytosolic phospholipase A2 activation. J Allergy Clin Immunol 116(3)537–543. https://doi.org/10.1016/j.jaci.2005.05.034

  190. Wolterink RG, KleinJan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42(5)1106–1116. https://doi.org/10.1002/eji.201142018

  191. Youssef M, De Sanctis JB, Kanagaratham C, Tao S, Ahmed E, Radzioch D (2020) Efficacy of optimized treatment protocol using LAU-7b formulation against Ovalbumin (OVA) and House Dust Mite (HDM) - induced allergic asthma in atopic hyperresponsive A/J mice. Pharm Res 37(2). https://doi.org/10.1007/s11095-019-2743-z

  192. Hong JY, Chung Y, Steenrod J, Chen Q, Lei J, Comstock AT, Goldsmith AM, Bentley JK, Sajjan US, Hershenson MB (2014) Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma. Resp Res 15(1). https://doi.org/10.1186/1465-9921-15-63

  193. Ito K, Herbert C, Siegle JS, Vuppusetty C, Hansbro N, Thomas PS, Foster PS, Barnes PJ, Kumar RK (2008) Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma. Am J Respir Cell Mol Biol 39(5):543–550. https://doi.org/10.1165/rcmb.2008-0028OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. McKinley L, Alcorn JF, Peterson A, DuPont RB, Kapadia S, Logar A, Henry A, Irvin CG, Piganelli JD, Ray A, Kolls JK (2008) TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol 181(6)4089–4097. https://doi.org/10.4049/jimmunol.181.6.4089

  195. Nguyen TH, Maltby S, Eyers F, Foster PS, Yang M, Fu J (2016) Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation. PLoS One 11(9):e0163392. https://doi.org/10.1371/journal.pone.0163392

  196. Matsuse H, Fukushima C, Fukahori S, Tsuchida T, Kawano T, Nishino T, Kohno S (2013) Respiration 85(5)429–435. https://doi.org/10.1159/000345861

  197. Branchett WJ, Stölting H, Oliver RA, Walker SA, Puttur F, Gregory LG, Gabryšová L, Wilson MS, O'Garra A, Lloyd CM (2020) A T cell–myeloid IL-10 axis regulates pathogenic IFN-γ–dependent immunity in a mouse model of type 2–low asthma. J Allergy Clin Immunol 145(2)666–678.e9. https://doi.org/10.1016/j.jaci.2019.08.006

  198. Emily M, Nakada Jichuan, Shan Margaret W, Kinyanjui Elizabeth D, Fixman (2014) Adjuvant-dependent regulation of interleukin-17 expressing γδ T cells and inhibition of Th2 responses in allergic airways disease. Resp Res 15(1). https://doi.org/10.1186/s12931-014-0090-5

Download references

Acknowledgements

The authors thank the Sao Paulo State Research Foundation (FAPESP-Process 2018/06088-0), the National Council for Technologic and Scientific Development (CNPq-Process 303035/2018-8), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 for financial support.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnologico, Grant/Award Numbers: 303035/2018–8; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Grant/Award Number: financial code 001; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Numbers: 2018/06088–0.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have drafted the manuscript and revised and approved the final version.

Corresponding author

Correspondence to Carla Máximo Prado.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço, L.O., Ribeiro, A., Lopes, F.D.T.Q.d. et al. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clinic Rev Allerg Immunol 62, 240–263 (2022). https://doi.org/10.1007/s12016-021-08894-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08894-x

Keywords