Abstract
Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient’s clinical manifestation of the disease.


Similar content being viewed by others
References
Athari SS (2019) Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 4:1–19. https://doi.org/10.1038/s41392-019-0079-0
Network GA (2018) The global asthma report. Auckland, New Zealand
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA (2018) The concepts of asthma endotypes and phenotypes to guide current and novel treatment strategies. Expert Rev Respir Med 12:733–743. https://doi.org/10.1080/17476348.2018.1505507
Wenzel SE (2012) Asthma phenotypes : the evolution from clinical to molecular approaches. Nat Med 18:716–725. https://doi.org/10.1038/nm.2678
Dhami S, Kakourou A, Asamoah F et al (2017) Allergen immunotherapy for allergic asthma: A systematic review and meta-analysis. Allergy 72:1825–1848. https://doi.org/10.1111/all.13208
Kuruvilla ME, Lee FEH, Lee GB (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 56:219–233. https://doi.org/10.1007/s12016-018-8712-1
Aun MV, Bonamichi-santos R, Magalhães F et al (2017) Animal models of asthma : utility and limitations. J Asthma Allergy 10:293–301
Bhakta NR, Woodruff PG (2011) Human asthma phenotypes: from the clinic, to cytokines, and back again. Immunol Rev 242:220–232. https://doi.org/10.1161/CIRCULATIONAHA.110.956839
Ray A, Oriss TB, Wenzel SE (2015) Emerging molecular phenotypes of asthma. Am J Physiol Lung Cell Mol Physiol 308:130–140. https://doi.org/10.1152/ajplung.00070.2014
Moore WC, Meyers DA, Wenzel SE et al (2010) Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med 181:315–323. https://doi.org/10.1164/rccm.200906-0896OC
Siroux V, Basagan X, Boudier A et al (2011) Identifying adult asthma phenotypes using a clustering approach. Eur Respir J 38:310–317. https://doi.org/10.1183/09031936.00120810
Froidure A, Mouthuy J, Durham SR et al (2016) Asthma phenotypes and IgE responses. Eur Respir J 47:304–319. https://doi.org/10.1183/13993003.01824-2014
Green RH, Brightling CE, Woltman G et al (2002) Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 57:875–879
Haldar P, Pavord ID (2007) Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol 119:1043–1052. https://doi.org/10.1016/j.jaci.2007.02.042
Hekking PPW, Bel EH (2014) Developing and emerging clinical asthma phenotypes. J Allergy Clin Immunol Pr 2:671–680. https://doi.org/10.1016/j.jaip.2014.09.007
Rosenberg HF, Druey KM (2018) Modeling asthma: pitfalls, promises, and the road ahead. J Leukoc Biol 104:41–48. https://doi.org/10.1002/JLB.3MR1117-436R.Modeling
Wenzel SE (2021) Severe adult asthmas: Integrating clinical features, biology, and therapeutics to improve outcomes. Am J Respir Crit Care Med 203:809–821. https://doi.org/10.1164/rccm.202009-3631CI
Breiteneder H, Peng YQ, Agache I et al (2020) Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy Eur J Allergy Clin Immunol 75:3039–3068. https://doi.org/10.1111/all.14582
Nials AT, Uddin S (2008) Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 1:213–220. https://doi.org/10.1242/dmm.000323
Sagar S, Akbarshahi H, Uller L (2015) Translational value of animal models of asthma: challenges and promises. Eur J Pharmacol 759:272–277. https://doi.org/10.1016/j.ejphar.2015.03.037
Zosky GR, Sly PD (2007) Animal models of asthma. Clin Exp Allergy 37:973–988. https://doi.org/10.1111/j.1365-2222.2007.02740.x
Bates JHT, Rincon M, Irvin CG (2009) Animal models of asthma. Am J Physiol Lung Cell Mol Physiol 297:401–410
Gubernatorova EO, Namakanova OA, Tumanov AV et al (2019) Mouse models of severe asthma for evaluation of therapeutic cytokine targeting. Immunol Lett 207:73–83. https://doi.org/10.1016/j.imlet.2018.11.012
Haspeslagh E, Debeuf N, Hammad H, Lambrecht BN (2017) Murine models of allergic asthma. Methods Mol Biol 1559:121–136. https://doi.org/10.1007/978-1-4939-6786-5
Lambrecht BN, Hammad H, Fahy JV (2019) The cytokines of asthma. Immunity 50:975–991. https://doi.org/10.1016/j.immuni.2019.03.018
Asai-Tajiri Y, Matsumoto K, Fukuyama S et al (2014) Small interfering RNA against CD86 during allergen challenge blocks experimental allergic asthma. Resp Res 15:1–11. https://doi.org/10.1186/s12931-014-0132-z
Ano S, Morishima Y, Ishii Y et al (2013) Transcription factors GATA-3 and RORγt are important for determining the phenotype of allergic airway inflammation in a murine model of asthma. J Immunol 190:1056–1065. https://doi.org/10.4049/jimmunol.1202386
Liu W, Liu S, Verma M et al (2017) Mechanism of TH2/TH17-predominant and neutrophilic TH2/TH17-low subtypes of asthma. J Allergy Clin Immunol 139:1548–1558. https://doi.org/10.1016/j.jaci.2016.08.032
Anderson GP (2008) Endotyping asthma : new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372:1107–1119
Platts-Mills TAE, Schuyler AJ, Erwin EA et al (2016) IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol 137:1662–1670. https://doi.org/10.1016/j.physbeh.2017.03.040
Madore AM, Laprise C (2010) Immunological and genetic aspects of asthma and allergy. J Asthma Allergy 3:107–121. https://doi.org/10.2147/JAA.S8970
Murdoch JR, Lloyd CM (2010) Chronic inflammation and asthma. Mutat Res - Fundam Mol Mech Mutagen 690:24–39. https://doi.org/10.1016/j.mrfmmm.2009.09.005
Humeniuk P, Dubiela P, Hoffmann-Sommergruber K (2017) Dendritic cells and their role in allergy: Uptake, proteolytic processing and presentation of allergens. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071491
Reynolds G, Haniffa M (2015) Human and mouse mononuclear phagocyte networks: a tale of two species? Front Immunol 6:1–15. https://doi.org/10.3389/fimmu.2015.00330
Lombardi V, Singh AK, Akbari O (2010) The role of costimulatory molecules in allergic disease and asthma. Int Arch Allergy Immunol 151:179–189
Poulsen LK, Hummelshoj L (2007) Triggers of IgE class switching and allergy development. Ann Med 39:440–456. https://doi.org/10.1080/07853890701449354
McBrien CN, Menzies-Gow A (2017) The biology of eosinophils and their role in asthma. Front Med 4:1–14. https://doi.org/10.3389/fmed.2017.00093
Wypych TP, Marzi R, Wu GF et al (2018) Role of B cells in T helper cell responses in a mouse model of asthma. J Allergy Clin Immunol 141:1395–1410. https://doi.org/10.1016/j.jaci.2017.09.001
Deckers J, Madeira FB, Hammad H (2013) Innate immune cells in asthma. Trends Immunol 34:540–547. https://doi.org/10.1016/j.it.2013.08.004
Brown JM, Wilson TM, Metcalfe DD (2008) The mast cell and allergic diseases: Role in pathogenesis and implications for therapy. Clin Exp Allergy 38:4–18. https://doi.org/10.1111/j.1365-2222.2007.02886.x
De Vries MP, Van Den Bemt L, Van Der Mooren FM et al (2005) The prevalence of house dust mite (HDM) allergy and the use of HDM-impermeable bed covers in a primary care population of patients with persistent asthma in the Netherlands. Prim Care Respir J 14:210–214. https://doi.org/10.1016/j.pcrj.2005.04.005
Maddur MS, Sharma M, Hegde P et al (2014) Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand. Nat Commun 5:1–13. https://doi.org/10.1038/ncomms5092
Chauhan PS, Singh DK, Dash D, Singh R (2018) Intranasal curcumin regulates chronic asthma in mice by modulating NF-ĸB activation and MAPK signaling. Phytomedicine 51:29–38. https://doi.org/10.1016/j.phymed.2018.06.022
Yang N, Shang YX (2019) Epigallocatechin gallate ameliorates airway inflammation by regulating Treg/Th17 imbalance in an asthmatic mouse model. Int Immunopharmacol 72:422–428. https://doi.org/10.1016/j.intimp.2019.04.044
Lombardi C, Savi E, Ridolo E et al (2017) Is allergic sensitization relevant in severe asthma? Which allergens may be culprit? World Allergy Organ J 10:1–7. https://doi.org/10.1186/s40413-016-0138-8
Tung HY, Li E, Landers C et al (2018) Advances and evolving concepts in allergic asthma. Semin Respir Crit Care Med 39:64–81. https://doi.org/10.1055/s-0037-1607981
Walker ML, Holt KE, Anderson GP et al (2014) Elucidation of pathways driving asthma pathogenesis: development of a systems-level analytic strategy. Front Immunol 5:1–16. https://doi.org/10.3389/fimmu.2014.00447
Bartlett NW, Walton RP, Edwards MR et al (2008) Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 14:199–204. https://doi.org/10.1038/nm1713
Essilfie AT, Simpson JL, Dunkley ML et al (2012) Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma. Thorax 67:588–599. https://doi.org/10.1136/thoraxjnl-2011-200160
Diaz-Sanchez D, Dotson AR, Takenaka H, Saxon A (1994) Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest 94:1417–1425. https://doi.org/10.1172/JCI117478
Acciani TH, Brandt EB, Khurana Hershey GK, Le Cras TD (2013) Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin Exp Allergy 43:1406–1418. https://doi.org/10.1111/cea.12200
Alberg T, Cassee FR, Groeng EC et al (2009) Fine ambient particles from various sites in Europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model. J Toxicol Environ Heal A 72:1–13. https://doi.org/10.1080/15287390802414471
Brandt EB, Bolcas PE, Ruff BP, Khurana Hershey GK (2020) TSLP contributes to allergic airway inflammation induced by diesel exhaust particle exposure in an experimental model of severe asthma. Clin Exp Allergy 50:121–124. https://doi.org/10.1111/cea.13512
Xu X, Zhang J, Yang X et al (2020) The role and potential pathogenic mechanism of particulate matter in childhood asthma: a review and perspective. J Immunol Res 2:1–8. https://doi.org/10.1155/2020/8254909
Achakulwisut P, Brauer M, Hystad P, Anenberg SC (2019) Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO 2 pollution: estimates from global datasets. Lancet Planet Heal 3:166–178. https://doi.org/10.1016/S2542-5196(19)30046-4
Duffey H, Anderson WC (2019) It’s time to start phenotyping our patients with asthma. Immunol Allergy Clin N Am 39:561–572. https://doi.org/10.1016/j.iac.2019.07.009
Skloot GS (2016) Asthma phenotypes and endotypes: a personalized approach to treatment. Curr Opin Pulm Med 22:3–9. https://doi.org/10.1097/MCP.0000000000000225
Lötvall J, Akdis CA, Bacharier LB et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127:355–360. https://doi.org/10.1016/j.jaci.2010.11.037
Agache I, Akdis CA (2019) Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest 129:1493–1503. https://doi.org/10.1172/JCI124611
Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56. https://doi.org/10.1038/ni.3049
Haldar P, Pavord ID, Shaw DE et al (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178:218–224. https://doi.org/10.1164/rccm.200711-1754OC
GINA (2021) Global Strategy for Asthma Management and Prevention
Karrasch S, Linde K, Rücker G et al (2017) Accuracy of FENO for diagnosing asthma: a systematic review. Thorax 72:109–116. https://doi.org/10.1136/thoraxjnl-2016-208704
Maltby S, Gibson PG, Reddel HK et al (2020) Severe Asthma Toolkit: an online resource for multidisciplinary health professionals - Needs assessment, development process and user analytics with survey feedback. BMJ Open 10. https://doi.org/10.1136/bmjopen-2019-032877
Fahy JV, Wong H, Liu J, Boushey HA (1995) Comparison of samples collerted by sputum indurtion and bronchoscopy from asthmatic and healthy subjects. Am J Respir Crit Care Med 152:53–58
Robinson DS, Hamid Q, Ying S et al (1992) Predominant Th2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326:298–304
Caminati M, Le PD, Bagnasco D, Canonica GW (2018) Type 2 immunity in asthma. World Allergy Organ J 11:1–10. https://doi.org/10.1186/s40413-018-0192-5
Colgan JD, Hankel IL (2010) Signaling pathways critical for allergic airway inflammation. Curr Opin Allergy Clin Immunol 10:42–47. https://doi.org/10.1097/ACI.0b013e328334f642
Gon Y, Hashimoto S (2018) Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int 67:12–17. https://doi.org/10.1016/j.alit.2017.08.011
Salter BM, Sehmi R (2017) Hematopoietic processes in eosinophilic asthma. Chest 152:410–416. https://doi.org/10.1016/j.chest.2017.01.021
Southam DS, Widmer N, Ellis R et al (2005) Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J Allergy Clin Immunol 115:95–102. https://doi.org/10.1016/j.jaci.2004.09.022
Guida G, Riccio AM (2019) Immune induction of airway remodeling. Semin Immunol 46:1–22. https://doi.org/10.1016/j.smim.2019.101346
Toledo AC, Sakoda CPP, Perini A et al (2013) Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br J Pharmacol 168:1736–1749. https://doi.org/10.1111/bph.12062
Lee JJ, Dimina D, Macias MMP et al (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science (80- ) 305:1773–1776. https://doi.org/10.1126/science.1099472
Thiriou D, Morianos I, Xanthou G, Samitas K (2017) Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int Immunopharmacol 48:43–54. https://doi.org/10.1016/j.intimp.2017.04.027
Komi DEA, Mortaz E, Amani S et al (2020) The role of mast cells in IgE-independent lung diseases. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-020-08779-5
Komi DEA, Bjermer L (2018) Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 56:234–247. https://doi.org/10.1007/s12016-018-8720-1
Kubo M (2017) Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev 278:162–172
Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281:154–168. https://doi.org/10.1111/imr.12619
He Z, Song J, Hua J et al (2018) Mast cells are essential intermediaries in regulating IL-33/ST2 signaling for an immune network favorable to mucosal healing in experimentally inflamed colons. Cell Death Dis 9. https://doi.org/10.1038/s41419-018-1223-4
Hsu CL, Chhiba KD, Krier-Burris R et al (2020) Allergic inflammation is initiated by IL-33–dependent crosstalk between mast cells and basophils. PLoS One 15:1–21. https://doi.org/10.1371/journal.pone.0226701
Van Der Ploeg EK, Carreras Mascaro A, Huylebroeck D et al (2020) Group 2 innate lymphoid cells in human respiratory disorders. J Innate Immun 12:47–62. https://doi.org/10.1159/000496212
Cherrier DE, Serafini N, Di Santo JP (2018) Innate lymphoid cell development: a T cell perspective. Immunity 48:1091–1103. https://doi.org/10.1016/j.immuni.2018.05.010
Vivier E, Artis D, Colonna M et al (2018) Innate lymphoid cells: 10 years on. Cell 174:1054–1066. https://doi.org/10.1016/j.cell.2018.07.017
Guia S, Narni-Mancinelli E (2020) Helper-like innate lymphoid cells in humans and mice. Trends Immunol 41:436–452. https://doi.org/10.1016/j.it.2020.03.002
Yasuda Y, Nagano T, Kobayashi K, Nishimura Y (2020) Group 2 innate lymphoid cells and the house dust mite-induced asthma mouse model. Cells 9. https://doi.org/10.3390/cells9051178
Hoyler T, Klose CSN, Souabni A et al (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634–648. https://doi.org/10.1016/j.immuni.2012.06.020
Chen R, Smith SG, Salter B et al (2017) Allergen-induced increases in sputum levels of group 2 innate lymphoid cells in subjects with asthma. Am J Respir Crit Care Med 196:700–712. https://doi.org/10.1164/rccm.201612-2427OC
Bonser L, Erle D (2017) Airway mucus and asthma: the role of MUC5AC and MUC5B. J Clin Med 6:112. https://doi.org/10.3390/jcm6120112
Papi A, Brightling C, Pedersen SE, Reddel HK (2018) Asthma Lancet 391:783–800. https://doi.org/10.1016/S0140-6736(17)33311-1
Humbles AA, Lloyd CM, McMillan SJ et al (2004) A critical role for eosinophils in allergic airways remodeling. Science (80- ) 305:1776–1779. https://doi.org/10.1126/science.1100283
Cho JY, Miller M, Baek KJ et al (2004) Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest 113:551–560. https://doi.org/10.1172/JCI19133
Leitch VD, Strudwick XL, Matthaei KI et al (2009) IL-5-overexpressing mice exhibit eosinophilia and altered wound healing through mechanisms involving prolonged inflammation. Immunol Cell Biol 87:131–140. https://doi.org/10.1038/icb.2008.72
Tanaka H, Komai M, Nagao K et al (2004) Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Resp Cell Mol Biol 31:62–68. https://doi.org/10.1165/rcmb.2003-0305OC
De VV, Vanoirbeek JAJ, Luyts K et al (2010) Choice of mouse strain influences the outcome in a mouse model of chemical-induced asthma. PLoS One 5:1–9. https://doi.org/10.1371/journal.pone.0012581
Kumar RK, Foster PS (2012) Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness? Front Physiol 1–7. https://doi.org/10.3389/fphys.2012.00312
Harb H, Chatila TA (2020) Mechanisms of dupilumab. Clin Exp Allergy 50:5–14. https://doi.org/10.1111/cea.13491
Akdis M, Aab A, Altunbulakli C et al (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol 138:984–1010. https://doi.org/10.1016/j.jaci.2016.06.033
Corren J, Lemanske RF, Hanania NA et al (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365:1088–1098
Santana FPR, Da Silva RC, Grecco SDS et al (2019) Inhibition of MAPK and STAT3-SOCS3 by Sakuranetin attenuated chronic allergic airway inflammation in mice. Med Inflamm 2019:1–15. https://doi.org/10.1155/2019/1356356
Tamiya T, Ichiyama K, Kotani H et al (2013) Smad2/3 and IRF4 play a cooperative role in IL-9–producing T cell induction. J Immunol 191:2360–2371. https://doi.org/10.4049/jimmunol.1301276
Koch S, Sopel N, Finotto S (2017) Th9 and other IL-9-producing cells in allergic asthma. Sem Immunopathol 39:55–68. https://doi.org/10.1007/s00281-016-0601-1
Wilhelm C, Hirota K, Stieglitz B et al (2012) Interleukin 9 fate reporter reveals induction of innate IL-9 response in lung inflammation. Nat Immunol 12:1071–1077. https://doi.org/10.1038/ni.2133.Interleukin
Hew M, Menzies-Gow A, Hull JH et al (2020) Systematic assessment of difficult-to-treat asthma: Principles and Perspectives. J Allergy Clin Immunol Pr. https://doi.org/10.1016/j.jaip.2020.02.036
Wang W, Li Y, Lv Z et al (2018) Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol 201:2221–2231. https://doi.org/10.4049/jimmunol.1800709
Walker JA, McKenzie ANJ (2018) TH2 cell development and function. Nat Rev Immunol 18:121–133. https://doi.org/10.1038/nri.2017.118
Domingo C, Palomares O, Sandham DA et al (2018) The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation. Resp Res 19:1–8. https://doi.org/10.1186/s12931-018-0893-x
Xue L, Salimi M, Panse I et al (2014) Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 133. https://doi.org/10.1016/j.jaci.2013.10.056
Gazi L, Gyles S, Rose J et al (2005) Delta12-Prostaglandin D2 is a potent and selective CRTH2 receptor agonist and causes activation of human eosinophils and Th2 lymphocytes. Prostaglandins Other Lipid Mediat 75:153–167. https://doi.org/10.1016/j.prostaglandins.2004.11.003
Fahy JV (2015) Type 2 inflammation in asthma — present in most, absent in many. Nat Rev Immunol 15:57–65. https://doi.org/10.1038/nri3786.Type
Foster PS, Maltby S, Rosenberg HF et al (2017) Modeling Th2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 278:20–40. https://doi.org/10.1111/imr.12549.Modeling
Yang Y, Yang M, Cho K et al (2008) Study of a BALB/c mouse model for allergic asthma. Toxicol Res 24:253–261
Canning BJ, Chou Y (2008) Using guinea pigs in studies relevant to asthma and COPD. Pulm Pharmacol Ther 21:1–36. https://doi.org/10.1016/j.pupt.2008.01.004.Using
Brusselle GG, Kips JC, Tavernier JH et al (1994) Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 24:73–80. https://doi.org/10.1111/j.1365-2222.1994.tb00920.x
Chen BL, Qiu Y, Bai C et al (2018) Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL - 4R α-Jak1-STAT6 and Jagged1 / Jagged2 - Notch1 / Notch2 pathways in asthmatic mice. Clin Exp Allergy 48:1494–1508. https://doi.org/10.1111/cea.13258
Serra MF, Cotias AC, Pão CRR et al (2018) Repeated allergen exposure in A/J mice causes steroid-insensitive asthma via a defect in glucocorticoid receptor bioavailability. J Immunol 201:851–860. https://doi.org/10.4049/jimmunol.1700933
Shinagawa K, Kojima M (2003) Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med 168:959–967. https://doi.org/10.1164/rccm.200210-1188OC
Barrett NA, Maekawa A, Rahman OM et al (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182:1119–1128. https://doi.org/10.4049/jimmunol.182.2.1119
Chang YS, Kim YK, Bahn JW et al (2005) Comparison of asthma phenotypes using different sensitizing protocols in mice. Korean J Intern Med 20:152–158. https://doi.org/10.3904/kjim.2005.20.2.152
Kim DI, Song MK, Lee K (2019) Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes. BMC Pulm Med 19:1–11. https://doi.org/10.1186/s12890-019-1001-9
Barnes PJ (2010) Inhaled corticosteroids Pharmaceuticals 3:514–540. https://doi.org/10.3390/ph3030514
Peters MC, Ringel L, Dyjack N et al (2019) A transcriptomic method to determine airway immune dysfunction in T2-high and T2-low asthma. Am J Respir Crit Care Med 199:465–477. https://doi.org/10.1164/rccm.201807-1291OC
Canonica GW, Ferrando M, Baiardini I et al (2018) Asthma: personalized and precision medicine. Curr Opin Allergy Clin Immunol 18:51–58. https://doi.org/10.1097/ACI.0000000000000416
Fahy JV, Fleming HE, Wong HH et al (1997) The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med 155:1828–1834. https://doi.org/10.1164/ajrccm.155.6.9196082
Garcia G, Magnan A, Chiron R et al (2013) A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma. Chest 144:411–419. https://doi.org/10.1378/chest.12-1961
Corren J, Parnes JR, Wang L et al (2017) Tezepelumab in adults with uncontrolled asthma. N Engl J Med 377:936–946. https://doi.org/10.1056/NEJMoa1704064
Wenzel S, Ford L, Pearlman D et al (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368:2455–2466. https://doi.org/10.1056/NEJMoa1304048
Ortega HG, Liu MC, Pavord ID et al (2014) Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 371:1198–1207. https://doi.org/10.1056/NEJMoa1403290
Albers FC, Papi A, Taillé C et al (2019) Mepolizumab reduces exacerbations in patients with severe eosinophilic asthma, irrespective of body weight/body mass index: Meta-analysis of MENSA and MUSCA. Resp Res 20:1–10. https://doi.org/10.1186/s12931-019-1134-7
Dávila González I, Moreno Benítez F, Quirce S (2019) Benralizumab: a new approach for the treatment of severe eosinophilic asthma. J Investig Allergol Clin Immunol 29:84–93. https://doi.org/10.18176/jiaci.0385
Ibrahim H, O’Sullivan R, Casey D et al (2019) The effectiveness of Reslizumab in severe asthma treatment: a real-world experience. Resp Res 20:1–5. https://doi.org/10.1186/s12931-019-1251-3
Panettieri RA, Sjöbring U, Péterffy AM et al (2018) Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Resp Med 6:511–525. https://doi.org/10.1016/S2213-2600(18)30184-X
Apter AJ (2019) The tralokinumab story: nothing is ever simple. J Allergy Clin Immunol 143:1336–1338. https://doi.org/10.1016/j.jaci.2018.12.1005
Agache I, Beltran J, Akdis C et al (2020) Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. Allergy 75:1023–1042. https://doi.org/10.1111/all.14221
Rodrigues APD, Bortolozzo ASS, Arantes-Costa FM et al (2019) A plant proteinase inhibitor from enterolobium contortisiliquum attenuates airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma. Histol Histopathol 34:537–552. https://doi.org/10.14670/HH-18-059
Prado CM, Yano L, Rocha G et al (2011) Effects of inducible nitric oxide synthase inhibition in bronchial vascular remodeling-induced by chronic allergic pulmonary inflammation. Exp Lung Res 37:259–268. https://doi.org/10.3109/01902148.2010.538289
dos Santos TM, Righetti RF, Camargo L, do N et al (2018) Effect of anti-IL17 antibody treatment alone and in combination with Rho-kinase inhibitor in a murine model of asthma. Front Physiol 9:1–19. https://doi.org/10.3389/fphys.2018.01183
Shore SA (2007) Obesity and asthma: Lessons from animal models. J Appl Physiol 102:516–528. https://doi.org/10.1152/japplphysiol.00847.2006
Peters U, Dixon A, Forno E (2018) Obesity and asthma. J Allergy Clin Immunol 141:1169–1179. https://doi.org/10.1016/j.physbeh.2017.03.040
Polosa R, Thomson NC (2013) Smoking and asthma: dangerous liaisons. Eur Resp J 41:716–725. https://doi.org/10.1183/09031936.00073312
Mohanan S, Tapp H, McWilliams A, Dulin M (2014) Obesity and asthma: pathophysiology and implications for diagnosis and management in primary care. Exp Biol Med 239:1531–1540. https://doi.org/10.1177/1535370214525302
Al-Alwan A, Bates JHT, Chapman DG et al (2014) The nonallergic asthma of obesity: a matter of distal lung compliance. Am J Respir Crit Care Med 189:1494–1502. https://doi.org/10.1164/rccm.201401-0178OC
Jonckheere AC, Bullens DMA, Seys SF (2019) Innate lymphoid cells in asthma: Pathophysiological insights from murine models to human asthma phenotypes. Curr Opin Allergy Clin Immunol 19:53–60. https://doi.org/10.1097/ACI.0000000000000497
Peters-Golden M, Swern A, Bird SS et al (2006) Influence of body mass index on the response to asthma controller agents. Eur Resp J 27:495–503. https://doi.org/10.1183/09031936.06.00077205
Zhu L, Chen X, Chong L et al (2019) Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway. Int Immunol 67:396–407. https://doi.org/10.1016/j.intimp.2018.12.030
Dixon AE, Pratley RE, Forgione PM et al (2011) Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control and inflammation. J Allergy Clin Immunol 128:508–515. https://doi.org/10.1038/jid.2014.371
Spears M, McSharry C, Thomson NC (2006) Peroxisome proliferator-activated receptor-g agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy 36:1494–1504
Ray A, Kolls JK (2017) Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol 38:942–954. https://doi.org/10.1016/j.it.2017.07.003
Hadebe S, Kirstein F, Fierens K et al (2015) Microbial ligand costimulation drives neutrophilic steroid-refractory asthma. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0134219
Barnes PJ (2018) Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 18:454–466. https://doi.org/10.1038/s41577-018-0006-6
Pelaia G, Vatrella A, Busceti MT et al (2015) Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediat Inflamm 2015:1–8
Gao H, Ying S, Dai Y (2017) Pathological roles of neutrophil-mediated inflammation in asthma and its potential for therapy as a target. J Immunol Res. https://doi.org/10.1155/2017/3743048
Kunkel SL, Standiford T, Kasahara K, Strieter RM (1991) Interleukin-8 (IL-8): The major neutrophil chemotactic factor in the lung. Exp Lung Res 17:17–23. https://doi.org/10.3109/01902149109063278
Liang SC, Long AJ, Bennett F et al (2007) An IL-17F/A Heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179:7791–7799. https://doi.org/10.4049/jimmunol.179.11.7791
Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40:1830–1835. https://doi.org/10.1002/eji.201040391
Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517
Gao W, Han GJ, Zhu YJ et al (2020) Clinical characteristics and biomarkers analysis of asthma inflammatory phenotypes. Biomark Med 14:211–222. https://doi.org/10.2217/bmm-2019-0487
Zhou L, Lopes JE, Chong MMW et al (2008) TGF-β induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORγt function. Nature 453:236–240
Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238. https://doi.org/10.1038/nature04753
Wilson RH, Whitehead GS, Nakano H et al (2009) Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med 180:720–730. https://doi.org/10.1164/rccm.200904-0573OC
Nissen G, Hollaender H, Tang FSM et al (2018) Tumstatin fragment selectively inhibits neutrophil infiltration in experimental asthma exacerbation. Clin Exp Allergy 48:1483–1493. https://doi.org/10.1111/cea.13236
Camargo L, do N, Righetti RF, Aristóteles LR de CRB, et al (2018) Effects of anti-IL-17 on inflammation, remodeling, and oxidative stress in an experimental model of asthma exacerbated by LPS. Front Immunol 8:1–14. https://doi.org/10.3389/fimmu.2017.01835
Liang L, Hur J, Kang JY et al (2018) Effect of the anti-il-17 antibody on allergic inflammation in an obesity-related asthma model. Korean J Intern Med 33:1210–1223. https://doi.org/10.3904/kjim.2017.207
Belvisi MG, Baker K, Malloy N et al (2018) Modelling the asthma phenotype: impact of cigarette smoke exposure. Resp Res 19:1–11. https://doi.org/10.1186/s12931-018-0799-7
Wong EHC, Porter JD, Edwards MR, Johnston SL (2014) The role of macrolides in asthma: Current evidence and future directions. Lancet Resp Med 2:657–670. https://doi.org/10.1016/S2213-2600(14)70107-9
Fujimoto M, Serada S, Mihara M et al (2008) Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum 58:3710–3719. https://doi.org/10.1002/art.24126
Busse WW, Holgate S, Kerwin E et al (2013) Study of Brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188:1294–1302. https://doi.org/10.1164/rccm.201212-2318OC
Gu ZW, Wang YX, Cao ZW (2017) Neutralization of interleukin-17 suppresses allergic rhinitis symptoms by downregulating Th2 and Th17 responses and upregulating the Treg response. Oncotarget 8:22361–22369
Zhu L, Ciaccio CE, Casale TB (2018) Potential new targets for drug development in severe asthma. World Allergy Organ J 11:1–9. https://doi.org/10.1186/s40413-018-0208-1
Finotto S, Neurath MF, Glickman JN et al (2002) Development of spontaneous airway changes consistent with human asthma in mice lacking. T-bet. Science (80- ) 295:336–338. https://doi.org/10.1126/science.1065544
Ding F, Fu Z, Liu B (2018) Lipopolysaccharide exposure alleviates asthma in mice by regulating Th1/Th2 and Treg/Th17 balance. Med Sci Monit 24:3220–3229
Yang M, Kumar RK, Foster PS (2009) Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-γ and TLR4/MyD88 pathways. J Immunol 182:5107–5115. https://doi.org/10.4049/jimmunol.0803468
Duechs MJ, Tilp C, Tomsic C et al (2014) Development of a novel severe triple allergen asthma model in mice which is resistant to dexamethasone and partially resistant to TLR7 and TLR9 agonist treatment. PLoS One 9. https://doi.org/10.1371/journal.pone.0091223
Al-Harbi NO, Nadeem A, Ahmad SF et al (2019) Sulforaphane treatment reverses corticosteroid resistance in a mixed granulocytic mouse model of asthma by upregulation of antioxidants and attenuation of Th17 immune responses in the airways. Eur J Pharmacol 855:276–284. https://doi.org/10.1016/j.ejphar.2019.05.026
Ntontsi P, Loukides S, Bakakos P et al (2017) Clinical, functional and inflammatory characteristics in patients with pauci-granulocytic phenotypes. Allergy 72:1761–1767. https://doi.org/10.1111/ijlh.12426
Tliba O, Panettieri RA (2019) Paucigranulocytic asthma: the uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 143:1287–1294. https://doi.org/10.1016/j.physbeh.2017.03.040
Hastie AT, Moore WC, Li H et al (2013) Biomarker surrogates do not accurately predict sputum eosinophils and neutrophils in asthma. J Allergy Clin Immunol 132:72–80. https://doi.org/10.1161/CIRCULATIONAHA.110.956839
Amrani Y, Tliba O, Deshpande DA et al (2004) Bronchial hyperresponsiveness: insights into new signaling molecules. Curr Opin Pharmacol 4:230–234. https://doi.org/10.1016/j.coph.2004.02.004
Demarche S, Schleich F, Henket M et al (2016) Detailed analysis of sputum and systemic inflammation in asthma phenotypes: are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm Med 16:1–13. https://doi.org/10.1186/s12890-016-0208-2
Panettieri RA (2016) Neutrophilic and pauci-immune phenotypes in severe asthma. Immunol Allergy Clin North Am 36:569–579. https://doi.org/10.1016/j.iac.2016.03.007
Hirota JA, Nguyen TTB, Schaafsma D et al (2009) Airway smooth muscle in asthma: Phenotype plasticity and function. Pulm Pharmacol Ther 22:370–378. https://doi.org/10.1016/j.pupt.2008.12.004
Kippelen P, Anderson SD, Hallstrand TS (2018) Mechanisms and biomarkers of exercise-induced bronchoconstriction. Immunol Allergy Clin North Am 38(2)165–182 https://doi.org/10.1016/j.iac.2018.01.008
Ban GY, Cho K, Kim SH, Yoon MK, Kim JH, Lee HY, Shin YS, Ye YM, Cho JY, Park HS (2017) Metabolomic analysis identifies potential diagnostic biomarkers for aspirin-exacerbated respiratory disease. Clin Exp Allergy 47(1):37–47. https://doi.org/10.1111/cea.12797
Becker KL, Gresnigt MS, Smeekens SP, Jacobs CW, Magis-Escurra C, Jaeger M, Wang X, Lubbers R, Oosting M, Joosten LA, Netea MG, Reijers MH, van de VeerdonkFL, (2015) Pattern recognition pathways leading to a Th2 cytokine bias in allergic bronchopulmonary aspergillosis patients. Clin Exp Allergy 45(2):423–437. https://doi.org/10.1111/cea.12354
Henderson Jr WR, Tang LO, Chu SJ, Tsao SM, Chiang GK, Jones F, Jonas M, Pae C, Wang H, Chi EY (2002) A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 165(1)108-116. https://doi.org/10.1164/ajrccm.165.1.2105051
Yu QL, Chen Z (2018) Establishment of different experimental asthma models in mice. Exp Ther Med. https://doi.org/10.3892/etm.2018.5721
Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS, McGarry MP, Wang H, O’Neill KR, Colbert DC, Colby TV, Shen H, Blackburn MR, Irvin CC, Lee JJ, Lee NA (2007) Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol 178(12):7879–7889. https://doi.org/10.4049/jimmunol.178.12.7879
Beavitt SJ, Harder KW, Kemp JM, Jones J, Quilici C, Casagranda F, Lam E, Turner D, Brennan S, Sly PD, Tarlinton DM, Anderson GP, Hibbs ML (2005) Lyn-deficient mice develop severe persistent asthma: Lyn is a critical negative regulator of Th2 immunity. J Immunol 175(3)1867–1875. https://doi.org/10.4049/jimmunol.175.3.1867
Choi IW, Kim YS, Ko HM, Im SY, Kim JH, You HJ, Lee YC, Lee JH, Lee HK, Park YM (2005) TNF-α induces the late-phase airway hyperresponsiveness and airway inflammation through cytosolic phospholipase A2 activation. J Allergy Clin Immunol 116(3)537–543. https://doi.org/10.1016/j.jaci.2005.05.034
Wolterink RG, KleinJan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42(5)1106–1116. https://doi.org/10.1002/eji.201142018
Youssef M, De Sanctis JB, Kanagaratham C, Tao S, Ahmed E, Radzioch D (2020) Efficacy of optimized treatment protocol using LAU-7b formulation against Ovalbumin (OVA) and House Dust Mite (HDM) - induced allergic asthma in atopic hyperresponsive A/J mice. Pharm Res 37(2). https://doi.org/10.1007/s11095-019-2743-z
Hong JY, Chung Y, Steenrod J, Chen Q, Lei J, Comstock AT, Goldsmith AM, Bentley JK, Sajjan US, Hershenson MB (2014) Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma. Resp Res 15(1). https://doi.org/10.1186/1465-9921-15-63
Ito K, Herbert C, Siegle JS, Vuppusetty C, Hansbro N, Thomas PS, Foster PS, Barnes PJ, Kumar RK (2008) Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma. Am J Respir Cell Mol Biol 39(5):543–550. https://doi.org/10.1165/rcmb.2008-0028OC
McKinley L, Alcorn JF, Peterson A, DuPont RB, Kapadia S, Logar A, Henry A, Irvin CG, Piganelli JD, Ray A, Kolls JK (2008) TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol 181(6)4089–4097. https://doi.org/10.4049/jimmunol.181.6.4089
Nguyen TH, Maltby S, Eyers F, Foster PS, Yang M, Fu J (2016) Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation. PLoS One 11(9):e0163392. https://doi.org/10.1371/journal.pone.0163392
Matsuse H, Fukushima C, Fukahori S, Tsuchida T, Kawano T, Nishino T, Kohno S (2013) Respiration 85(5)429–435. https://doi.org/10.1159/000345861
Branchett WJ, Stölting H, Oliver RA, Walker SA, Puttur F, Gregory LG, Gabryšová L, Wilson MS, O'Garra A, Lloyd CM (2020) A T cell–myeloid IL-10 axis regulates pathogenic IFN-γ–dependent immunity in a mouse model of type 2–low asthma. J Allergy Clin Immunol 145(2)666–678.e9. https://doi.org/10.1016/j.jaci.2019.08.006
Emily M, Nakada Jichuan, Shan Margaret W, Kinyanjui Elizabeth D, Fixman (2014) Adjuvant-dependent regulation of interleukin-17 expressing γδ T cells and inhibition of Th2 responses in allergic airways disease. Resp Res 15(1). https://doi.org/10.1186/s12931-014-0090-5
Acknowledgements
The authors thank the Sao Paulo State Research Foundation (FAPESP-Process 2018/06088-0), the National Council for Technologic and Scientific Development (CNPq-Process 303035/2018-8), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 for financial support.
Funding
Conselho Nacional de Desenvolvimento Científico e Tecnologico, Grant/Award Numbers: 303035/2018–8; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Grant/Award Number: financial code 001; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Numbers: 2018/06088–0.
Author information
Authors and Affiliations
Contributions
All the authors have drafted the manuscript and revised and approved the final version.
Corresponding author
Ethics declarations
Ethics Approval
Not applicable.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lourenço, L.O., Ribeiro, A., Lopes, F.D.T.Q.d. et al. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clinic Rev Allerg Immunol 62, 240–263 (2022). https://doi.org/10.1007/s12016-021-08894-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12016-021-08894-x