Skip to main content

Advertisement

Log in

Cell Therapy Strategies on Duchenne Muscular Dystrophy: A Systematic Review of Clinical Applications

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Duchenne Muscular Dystrophy (DMD) is an inherited genetic disorder characterized by progressive degeneration of muscle tissue, leading to functional disability and premature death. Despite extensive research efforts, the discovery of a cure for DMD continues to be elusive, emphasizing the need to investigate novel treatment approaches. Cellular therapies have emerged as prospective approaches to address the underlying pathophysiology of DMD. This review provides an examination of the present situation regarding cell-based therapies, including CD133 + cells, muscle precursor cells, mesoangioblasts, bone marrow-derived mononuclear cells, mesenchymal stem cells, cardiosphere-derived cells, and dystrophin-expressing chimeric cells. A total of 12 studies were found eligible to be included as they were completed cell therapy clinical trials, clinical applications, or case reports with quantitative results. The evaluation encompassed an examination of limitations and potential advancements in this particular area of research, along with an assessment of the safety and effectiveness of cell-based therapies in the context of DMD. In general, the available data indicates that diverse cell therapy approaches may present a new, safe, and efficacious treatment modality for patients diagnosed with DMD. However, further studies are required to comprehensively understand the most advantageous treatment approach and therapeutic capacity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mercuri, E., & Muntoni, F. (2013). Muscular dystrophies. The Lancet, 381(9869), 845–860. https://doi.org/10.1016/s0140-6736(12)61897-2

    Article  CAS  Google Scholar 

  2. Emery, A. E. (2002). The muscular dystrophies. The Lancet, 359(9307), 687–695. https://doi.org/10.1016/s0140-6736(02)07815-7

    Article  CAS  Google Scholar 

  3. Connuck, D. M., Sleeper, L. A., Colan, S. D., Cox, G. F., Towbin, J. A., Lowe, A. M., Wilkinson, J. D., Orav, E. J., Cuniberti, L., Salbert, B. A., Lipshultz, S. E., Pediatric Cardiomyopathy Registry Study Group. (2008). Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. American Heart Journal, 155(6), 998–1005. https://doi.org/10.1016/j.ahj.2008.01.018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Freilinger, M., Schmidt, I., Dysek, S., Seidl, R., Schmidt, W. M., & Bittner, R. E. (2013). Muscle-specific discordant skewing of X chromosome inactivation leads to different clinical phenotypes of Duchenne muscular dystrophy in two monozygotic female twins. Neuropediatrics, 44, FV16_04.

    Article  Google Scholar 

  5. Ferrier, P., Bamatter, F., & Klein, D. (1965). Muscular dystrophy (Duchenne) in a girl with Turner’s syndrome. Journal of Medical Genetics, 2(1), 38–46. https://doi.org/10.1136/jmg.2.1.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chelly, J., Marlhens, F., Le Marec, B., Jeanpierre, M., Lambert, M., Hamard, G., Dutrillaux, B., & Kaplan, J. C. (1986). De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy. Human Genetics, 74(2), 193–196. https://doi.org/10.1007/BF00282093

    Article  CAS  PubMed  Google Scholar 

  7. Satre, V., Monnier, N., Devillard, F., Amblard, F., & Lunardi, J. (2004). Prenatal diagnosis of DMD in a female fetus affected by Turner syndrome. Prenatal Diagnosis, 24(11), 913–917. https://doi.org/10.1002/pd.1031

    Article  CAS  PubMed  Google Scholar 

  8. Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., Case, L. E., Clemens, P. R., Hadjiyannakis, S., Pandya, S., Street, N., Tomezsko, J., Wagner, K. R., Ward, L. M., Weber, D. R., DMD Care Considerations Working Group. (2018). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. The Lancet. Neurology, 17(3), 251–267. https://doi.org/10.1016/S1474-4422(18)30024-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patterson, G., Conner, H., Groneman, M., Blavo, C., & Parmar, M. S. (2023). Duchenne muscular dystrophy: Current treatment and emerging exon skipping and gene therapy approach. European Journal of Pharmacology, 947, 175675. https://doi.org/10.1016/j.ejphar.2023.175675

    Article  CAS  PubMed  Google Scholar 

  10. Deconinck, N., & Dan, B. (2007). Pathophysiology of Duchenne muscular dystrophy: Current hypotheses. Pediatric Neurology, 36(1), 1–7. https://doi.org/10.1016/j.pediatrneurol.2006.09.016

    Article  PubMed  Google Scholar 

  11. Duan, D., Goemans, N., Takeda, S., Mercuri, E., & Aartsma-Rus, A. (2021). Duchenne muscular dystrophy. Nature Reviews Disease Primers, 7(1), 13. https://doi.org/10.1038/s41572-021-00248-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thangarajh, M., Hendriksen, J., McDermott, M. P., Martens, W., Hart, K. A., Griggs, R. C., Muscle Study Group and TREAT-NMD. (2019). Relationships between DMD mutations and neurodevelopment in dystrophinopathy. Neurology, 93(17), e1597–e1604. https://doi.org/10.1212/WNL.0000000000008363

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moat, S. J., Bradley, D. M., Salmon, R., Clarke, A., & Hartley, L. (2013). Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). European Journal of Human Genetics, 21(10), 1049–1053. https://doi.org/10.1038/ejhg.2012.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mendell, J. R., Sahenk, Z., Lehman, K., Nease, C., Lowes, L. P., Miller, N. F., Iammarino, M. A., Alfano, L. N., Nicholl, A., Al-Zaidy, S., Lewis, S., Church, K., Shell, R., Cripe, L. H., Potter, R. A., Griffin, D. A., Pozsgai, E., Dugar, A., Hogan, M., & Rodino-Klapac, L. R. (2020). Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurology, 77(9), 1122–1131. https://doi.org/10.1001/jamaneurol.2020.1484

    Article  PubMed  Google Scholar 

  15. Bellinger, A. M., Reiken, S., Carlson, C., Mongillo, M., Liu, X., Rothman, L., Matecki, S., Lacampagne, A., & Marks, A. R. (2009). Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nature Medicine, 15(3), 325–330. https://doi.org/10.1038/nm.1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Passamano, L., Taglia, A., Palladino, A., Viggiano, E., D’Ambrosio, P., Scutifero, M., Rosaria Cecio, M., Torre, V., De Luca, F., Picillo, E., Paciello, O., Piluso, G., Nigro, G., & Politano, L. (2012). Improvement of survival in Duchenne Muscular Dystrophy: retrospective analysis of 835 patients. Acta Myologica : Myopathies and Cardiomyopathies: Official Journal of the Mediterranean Society of Myology, 31(2), 121–125.

    PubMed  Google Scholar 

  17. Lechner, A., Herzig, J. J., Kientsch, J. G., Kohler, M., Bloch, K. E., Ulrich, S., & Schwarz, E. I. (2023). Cardiomyopathy as cause of death in Duchenne muscular dystrophy: A longitudinal observational study. ERJ Open Research, 9(5), 00176–02023. https://doi.org/10.1183/23120541.00176-2023

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mendell, J. R., Shilling, C., Leslie, N. D., Flanigan, K. M., al-Dahhak, R., Gastier-Foster, J., Kneile, K., Dunn, D. M., Duval, B., Aoyagi, A., Hamil, C., Mahmoud, M., Roush, K., Bird, L., Rankin, C., Lilly, H., Street, N., Chandrasekar, R., & Weiss, R. B. (2012). Evidence-based path to newborn screening for Duchenne muscular dystrophy. Annals of Neurology, 71(3), 304–313. https://doi.org/10.1002/ana.23528

    Article  CAS  PubMed  Google Scholar 

  19. Romitti, P. A., Zhu, Y., Puzhankara, S., James, K. A., Nabukera, S. K., Zamba, G. K., Ciafaloni, E., Cunniff, C., Druschel, C. M., Mathews, K. D., Matthews, D. J., Meaney, F. J., Andrews, J. G., Conway, K. M., Fox, D. J., Street, N., Adams, M. M., Bolen, J., MD STARnet. (2015). Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics, 135(3), 513–521. https://doi.org/10.1542/peds.2014-2044

    Article  PubMed  Google Scholar 

  20. Deng, J., Zhang, J., Shi, K., & Liu, Z. (2022). Drug development progress in Duchenne muscular dystrophy. Frontiers in Pharmacology, 13, 950651. https://doi.org/10.3389/fphar.2022.950651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lim, K. R., Maruyama, R., & Yokota, T. (2017). Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Design, Development and Therapy, 11, 533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura, A., Shiba, N., Miyazaki, D., Nishizawa, H., Inaba, Y., Fueki, N., Maruyama, R., Echigoya, Y., & Yokota, T. (2017). Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. Journal of Human Genetics, 62(4), 459–463. https://doi.org/10.1038/jhg.2016.152

    Article  CAS  PubMed  Google Scholar 

  23. Sun, C., Serra, C., Lee, G., & Wagner, K. R. (2020). Stem cell-based therapies for Duchenne muscular dystrophy. Experimental Neurology, 323, 113086. https://doi.org/10.1016/j.expneurol.2019.113086

    Article  CAS  PubMed  Google Scholar 

  24. Law, P. K., Goodwin, T. G., Fang, Q. W., Chen, M., Li, H. J., Florendo, J. A., & Kirby, D. S. (1991). Myoblast transfer therapy for Duchenne muscular dystrophy. Acta Paediatrica Japonica, 33(2), 206–215. https://doi.org/10.1111/j.1442-200x.1991.tb01545.x

    Article  CAS  PubMed  Google Scholar 

  25. Law, P. K., Goodwin, T. G., Fang, Q., Duggirala, V., Larkin, C., Florendo, J. A., Kirby, D. S., Deering, M. B., Li, H. J., & Chen, M. (1992). Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplantation, 1(2–3), 235–244. https://doi.org/10.1177/0963689792001002-305

    Article  CAS  PubMed  Google Scholar 

  26. Huard, J., Bouchard, J. P., Roy, R., Malouin, F., Dansereau, G., Labrecque, C., Albert, N., Richards, C. L., Lemieux, B., & Tremblay, J. P. (1992). Human myoblast transplantation: Preliminary results of 4 cases. Muscle & Nerve, 15(5), 550–560. https://doi.org/10.1002/mus.880150504

    Article  CAS  Google Scholar 

  27. Gussoni, E., Pavlath, G. K., Lanctot, A. M., Sharma, K. R., Miller, R. G., Steinman, L., & Blau, H. M. (1992). Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature, 356(6368), 435–438. https://doi.org/10.1038/356435a0

    Article  CAS  PubMed  Google Scholar 

  28. Tremblay, J. P., Bouchard, J. P., Malouin, F., Théau, D., Cottrell, F., Collin, H., Rouche, A., Gilgenkrantz, S., Abbadi, N., & Tremblay, M. (1993). Myoblast transplantation between monozygotic twin girl carriers of Duchenne muscular dystrophy. Neuromuscular Disorders: NMD, 3(5–6), 583–592. https://doi.org/10.1016/0960-8966(93)90121-y

    Article  CAS  PubMed  Google Scholar 

  29. Hogrel, J. Y., Zagnoli, F., Canal, A., Fraysse, B., Bouchard, J. P., Skuk, D., Fardeau, M., & Tremblay, J. P. (2013). Assessment of a symptomatic Duchenne muscular dystrophy carrier 20 years after myoblast transplantation from her asymptomatic identical twin sister. Neuromuscular Disorders: NMD, 23(7), 575–579. https://doi.org/10.1016/j.nmd.2013.04.007

    Article  PubMed  Google Scholar 

  30. Karpati, G., Ajdukovic, D., Arnold, D., Gledhill, R. B., Guttmann, R., Holland, P., Koch, P. A., Shoubridge, E., Spence, D., & Vanasse, M. (1993). Myoblast transfer in Duchenne muscular dystrophy. Annals of Neurology, 34(1), 8–17. https://doi.org/10.1002/ana.410340105

    Article  CAS  PubMed  Google Scholar 

  31. Mendell, J. R., Kissel, J. T., Amato, A. A., King, W., Signore, L., Prior, T. W., Sahenk, Z., Benson, S., McAndrew, P. E., & Rice, R. (1995). Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. The New England Journal of Medicine, 333(13), 832–838. https://doi.org/10.1056/NEJM199509283331303

    Article  CAS  PubMed  Google Scholar 

  32. Miller, R. G., Sharma, K. R., Pavlath, G. K., Gussoni, E., Mynhier, M., Lanctot, A. M., Greco, C. M., Steinman, L., & Blau, H. M. (1997). Myoblast implantation in Duchenne muscular dystrophy: The San Francisco study. Muscle & Nerve, 20(4), 469–478. https://doi.org/10.1002/(sici)1097-4598(199704)20:4%3c469::aid-mus10%3e3.0.co;2-u

    Article  CAS  Google Scholar 

  33. Skuk, D., Goulet, M., Roy, B., Piette, V., Côté, C. H., Chapdelaine, P., Hogrel, J., Paradis, M., Bouchard, J. P., Sylvain, M., Lachance, G., & Tremblay, J. P. (2007). First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: Eighteen months follow-up. Neuromuscular Disorders, 17(1), 38–46. https://doi.org/10.1016/j.nmd.2006.10.003

    Article  PubMed  Google Scholar 

  34. Torrente, Y., Belicchi, M., Marchesi, C., D’Antona, G., Cogiamanian, F., Pisati, F., Gavina, M., Giordano, R., Tonlorenzi, R., Fagiolari, G., Lamperti, C., Porretti, L., Lopa, R., Sampaolesi, M., Vicentini, L., Grimoldi, N., Tiberio, F., Songa, V., Baratta, P., … Bresolin, N. (2007). Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplantation, 16(6), 563–577. https://doi.org/10.3727/000000007783465064

    Article  CAS  PubMed  Google Scholar 

  35. Sharma, A., Sane, H., Badhe, P., Gokulchandran, N., Kulkarni, P., Lohiya, M., Biju, H., & Jacob, V. C. (2013). A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients. Cell Transplantation, 22(Suppl 1), S127–S138. https://doi.org/10.3727/096368913X672136

    Article  PubMed  Google Scholar 

  36. Sharma, A., Sane, H., Paranjape, A., Bhagawanani, K., Gokulchandran, N., & Badhe, P. (2014). Autologous bone marrow mononuclear cell transplantation in Duchenne muscular dystrophy - a case report. The American Journal of Case Reports, 15, 128–134. https://doi.org/10.12659/AJCR.890078

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cossu, G., Previtali, S. C., Napolitano, S., Cicalese, M. P., Tedesco, F. S., Nicastro, F., Noviello, M., Roostalu, U., Natali Sora, M. G., Scarlato, M., De Pellegrin, M., Godi, C., Giuliani, S., Ciotti, F., Tonlorenzi, R., Lorenzetti, I., Rivellini, C., Benedetti, S., Gatti, R., Marktel, S., … Ciceri, F. (2015). Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Molecular Medicine, 7(12), 1513–1528. https://doi.org/10.15252/emmm.201505636

  38. Rajput, B. S., Chakrabarti, S. K., Dongare, V. S., Ramirez, C. M., & Deb, K. D. (2015). Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Duchenne Muscular Dystrophy: Safety and Feasibility Study in India. Journal of Stem Cells, 10(2), 141–156.

    CAS  PubMed  Google Scholar 

  39. Dai, A., Baspinar, O., Yeşilyurt, A., Sun, E., Aydemir, Ç. İ, Öztel, O. N., Capkan, D. U., Pinarli, F., Agar, A., & Karaöz, E. (2018). Efficacy of stem cell therapy in ambulatory and nonambulatory children with Duchenne muscular dystrophy - Phase I-II. Degenerative Neurological and Neuromuscular Disease, 8, 63–77. https://doi.org/10.2147/DNND.S170087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajput, B., Meher, K., Somalapur, P., Kulkarni, R., Bopardikar, A., & Kumar, R. (2019). Safety and Efficacy of a Combination Therapy (Autologous Bone Marrow-Derived Mononuclear Cells and Umbilical Cord-Derived Mesenchymal Stem Cells) in Duchenne Muscular Dystrophy Patients. Journal of Embryology & Stem Cell Research, 3(2). https://doi.org/10.23880/jes-16000127.

  41. Świątkowska-Flis, B., Zdolińska-Malinowska, I., Sługocka, D., & Boruczkowski, D. (2021). The use of umbilical cord-derived mesenchymal stem cells in patients with muscular dystrophies: Results from compassionate use in real-life settings. Stem Cells Translational Medicine, 10(10), 1372–1383. https://doi.org/10.1002/sctm.21-0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taylor, M., Jefferies, J., Byrne, B., Lima, J., Ambale-Venkatesh, B., Ostovaneh, M. R., Makkar, R., Goldstein, B., Smith, R. R., Fudge, J., Malliaras, K., Fedor, B., Rudy, J., Pogoda, J. M., Marbán, L., Ascheim, D. D., Marbán, E., & Victor, R. G. (2019). Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology, 92(8), e866–e878. https://doi.org/10.1212/WNL.0000000000006950

    Article  PubMed  PubMed Central  Google Scholar 

  43. McDonald, C. M., Marbán, E., Hendrix, S., Hogan, N., Ruckdeschel Smith, R., Eagle, M., Finkel, R. S., Tian, C., Janas, J., Harmelink, M. M., Varadhachary, A. S., Taylor, M. D., Hor, K. N., Mayer, O. H., Henricson, E. K., Furlong, P., Ascheim, D. D., Rogy, S., Williams, P., Marbán, L., … HOPE-2 Study Group (2022). Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet (London, England), 399(10329), 1049–1058. https://doi.org/10.1016/S0140-6736(22)00012-5

  44. Heydemann, A., Bieganski, G., Wachowiak, J., Czarnota, J., Niezgoda, A., Siemionow, K., Ziemiecka, A., Sikorska, M. H., Bozyk, K., Tullius, S. G., & Siemionow, M. (2023). Dystrophin Expressing Chimeric (DEC) Cell Therapy for Duchenne Muscular Dystrophy: A First-in-Human Study with Minimum 6 Months Follow-up. Stem Cell Reviews and Reports, 19(5), 1340–1359. https://doi.org/10.1007/s12015-023-10530-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siemionow, M., Biegański, G., Niezgoda, A., Wachowiak, J., Czarnota, J., Siemionow, K., Ziemiecka, A., Sikorska, M. H., Bożyk, K., & Heydemann, A. (2023). Safety and Efficacy of DT-DEC01 Therapy in Duchenne Muscular Dystrophy Patients: A 12 - Month Follow-Up Study After Systemic Intraosseous Administration. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-023-10620-3.Advanceonlinepublication.10.1007/s12015-023-10620-3

    Article  PubMed  PubMed Central  Google Scholar 

  46. Negroni, E., Riederer, I., Chaouch, S., Belicchi, M., Razini, P., Di Santo, J., Torrente, Y., Butler-Browne, G. S., & Mouly, V. (2009). In vivo myogenic potential of human CD133+ muscle-derived stem cells: A quantitative study. Molecular Therapy: The Journal of the American Society of Gene Therapy, 17(10), 1771–1778. https://doi.org/10.1038/mt.2009.167

    Article  CAS  PubMed  Google Scholar 

  47. Meng, J., Chun, S., Asfahani, R., Lochmüller, H., Muntoni, F., & Morgan, J. (2014). Human skeletal muscle-derived CD133+ cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Molecular Therapy, 22(5), 1008–1017. https://doi.org/10.1038/mt.2014.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bittner, R. E., Schöfer, C., Weipoltshammer, K., Ivanova, S., Streubel, B., Hauser, E., Freilinger, M., Höger, H., Elbe-Bürger, A., & Wachtler, F. (1999). Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anatomy and Embryology, 199(5), 391–396. https://doi.org/10.1007/s004290050237

    Article  CAS  PubMed  Google Scholar 

  49. Nygren, J. M., Liuba, K., Breitbach, M., Stott, S., Thorén, L., Roell, W., Geisen, C., Sasse, P., Kirik, D., Björklund, A., Nerlov, C., Fleischmann, B. K., Jovinge, S., & Jacobsen, S. E. (2008). Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nature Cell Biology, 10(5), 584–592. https://doi.org/10.1038/ncb1721

    Article  CAS  PubMed  Google Scholar 

  50. Sharma, A., Gokulchandran, N., Chopra, G., Kulkarni, P., Lohia, M., Badhe, P., & Jacob, V. C. (2012). Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplantation, 21(Suppl 1), S79–S90. https://doi.org/10.3727/096368912X633798

    Article  PubMed  Google Scholar 

  51. Yang, X. F., Xu, Y. F., Zhang, Y. B., Wang, H. M., Lü, N. W., Wu, Y. X., Lü, X., Cui, J. P., Shan, H., Yan, Y., & Zhou, J. X. (2009). Functional improvement of patients with progressive muscular dystrophy by bone marrow and umbilical cord blood mesenchymal stem cell transplantations. Zhonghua Yi Xue Za Zhi, 89(36), 2552–2556.

    PubMed  Google Scholar 

  52. Minasi, M. G., Riminucci, M., De Angelis, L., Borello, U., Berarducci, B., Innocenzi, A., Caprioli, A., Sirabella, D., Baiocchi, M., De Maria, R., Boratto, R., Jaffredo, T., Broccoli, V., Bianco, P., & Cossu, G. (2002). The meso-angioblast: A multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development (Cambridge, England), 129(11), 2773–2783. https://doi.org/10.1242/dev.129.11.2773

    Article  CAS  PubMed  Google Scholar 

  53. Sampaolesi, M., & Cossu, G. (2009). Chapter 60 - Stem Cells for the Treatment of Muscular Dystrophy: Therapeutic Perspectives. In R. Lanza, J. Gearhart, B. Hogan, D. Melton, R. Pedersen, E. D. Thomas, J. Thomson, & I. Wilmut (Eds.), Essentials of Stem Cell Biology (2nd ed., pp. 543–550). Academic Press.

    Chapter  Google Scholar 

  54. Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213(2), 341–347. https://doi.org/10.1002/jcp.21200

    Article  CAS  PubMed  Google Scholar 

  55. Elhussieny, A., Nogami, K., Sakai-Takemura, F., Maruyama, Y., Omar Abdelbakey, A., Abou El-kheir, W., Takeda, S., & Miyagoe-Suzuki, Y. (2020). Mesenchymal Stem Cells for Regenerative Medicine for Duchenne Muscular Dystrophy. IntechOpen. https://doi.org/10.5772/intechopen.92824

    Article  Google Scholar 

  56. Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24(5), 1294–1301. https://doi.org/10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Q., Yang, Q., Wang, Z., Tong, H., Ma, L., Zhang, Y., Shan, F., Meng, Y., & Yuan, Z. (2016). Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Human Vaccines & Immunotherapeutics, 12(1), 85–96. https://doi.org/10.1080/21645515.2015.1030549

    Article  Google Scholar 

  58. Kwon, S., Ki, S. M., Park, S. E., Kim, M. J., Hyung, B., Lee, N. K., Shim, S., Choi, B. O., Na, D. L., Lee, J. E., & Chang, J. W. (2016). Anti-apoptotic Effects of Human Wharton’s Jelly-derived Mesenchymal Stem Cells on Skeletal Muscle Cells Mediated via Secretion of XCL1. Molecular Therapy: The Journal of the American Society of Gene Therapy, 24(9), 1550–1560. https://doi.org/10.1038/mt.2016.125

    Article  CAS  PubMed  Google Scholar 

  59. Rogers, R. G., Fournier, M., Sanchez, L., Ibrahim, A. G., Aminzadeh, M. A., Lewis, M. I., & Marbán, E. (2019). Disease-modifying bioactivity of intravenous cardiosphere-derived cells and exosomes in mdx mice. JCI Insight, 4(7), e125754. https://doi.org/10.1172/jci.insight.125754

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marbán, E. (2018). A mechanistic roadmap for the clinical application of cardiac cell therapies. Nature Biomedical Engineering, 2, 353–361. https://doi.org/10.1038/s41551-018-0216-z

    Article  PubMed  PubMed Central  Google Scholar 

  61. Makkar, R. R., Kereiakes, D. J., Aguirre, F., Kowalchuk, G., Chakravarty, T., Malliaras, K., Francis, G. S., Povsic, T. J., Schatz, R., Traverse, J. H., Pogoda, J. M., Smith, R. R., Marbán, L., Ascheim, D. D., Ostovaneh, M. R., Lima, J. A. C., DeMaria, A., Marbán, E., & Henry, T. D. (2020). Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): A randomized, placebo-controlled, double-blinded trial. European Heart Journal, 41(36), 3451–3458. https://doi.org/10.1093/eurheartj/ehaa541

    Article  CAS  PubMed  Google Scholar 

  62. Chimenti, I., Smith, R. R., Li, T. S., Gerstenblith, G., Messina, E., Giacomello, A., & Marbán, E. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106(5), 971–980. https://doi.org/10.1161/CIRCRESAHA.109.210682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ibrahim, A. G., Cheng, K., & Marbán, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619. https://doi.org/10.1016/j.stemcr.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aminzadeh, M. A., Rogers, R. G., Fournier, M., Tobin, R. E., Guan, X., Childers, M. K., Andres, A. M., Taylor, D. J., Ibrahim, A., Ding, X., Torrente, A., Goldhaber, J. M., Lewis, M., Gottlieb, R. A., Victor, R. A., & Marbán, E. (2018). Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem Cell Reports, 10(3), 942–955. https://doi.org/10.1016/j.stemcr.2018.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sienkiewicz, D., Kulak, W., Okurowska-Zawada, B., & Paszko-Patej, G. (2015). Duchenne muscular dystrophy: Current cell therapies. Therapeutic Advances in Neurological Disorders, 8(4), 166–177. https://doi.org/10.1177/1756285615586123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Noviello, M., Tedesco, F. S., Bondanza, A., Tonlorenzi, R., Rosaria Carbone, M., Gerli, M. F. M., Marktel, S., Napolitano, S., Cicalese, M. P., Ciceri, F., Peretti, G., Cossu, G., & Bonini, C. (2014). Inflammation converts human mesoangioblasts into targets of alloreactive immune responses: Implications for allogeneic cell therapy of DMD. Molecular Therapy: The Journal of the American Society of Gene Therapy, 22(7), 1342–1352. https://doi.org/10.1038/mt.2014.62

    Article  CAS  PubMed  Google Scholar 

  67. Siemionow, M., Demir, Y., Mukherjee, A., & Klimczak, A. (2005). Development and maintenance of donor-specific chimerism in semi-allogenic and fully major histocompatibility complex mismatched facial allograft transplants. Transplantation, 79(5), 558–567. https://doi.org/10.1097/01.tp.0000152799.16035.b7

    Article  CAS  PubMed  Google Scholar 

  68. Siemionow, M., Klimczak, A., Unal, S., Agaoglu, G., & Carnevale, K. (2008). Hematopoietic stem cell engraftment and seeding permits multi-lymphoid chimerism in vascularized bone marrow transplants. American Journal of Transplantation, 8(6), 1163–1176. https://doi.org/10.1111/j.1600-6143.2008.02241.x

    Article  CAS  PubMed  Google Scholar 

  69. Siemionow, M., Cwykiel, J., Heydemann, A., Garcia-Martinez, J., Siemionow, K., & Szilagyi, E. (2018). Creation of Dystrophin Expressing Chimeric Cells of Myoblast Origin as a Novel Stem Cell Based Therapy for Duchenne Muscular Dystrophy. Stem Cell Reviews and Reports, 14(2), 189–199. https://doi.org/10.1007/s12015-017-9792-7

    Article  CAS  PubMed  Google Scholar 

  70. Siemionow, M., Langa, P., Harasymczuk, M., Cwykiel, J., Sielewicz, M., Smieszek, J., & Heydemann, A. (2021). Human dystrophin expressing chimeric (DEC) cell therapy ameliorates cardiac, respiratory, and skeletal muscle’s function in Duchenne muscular dystrophy. Stem Cells Translational Medicine, 10(10), 1406–1418. https://doi.org/10.1002/sctm.21-0054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hotta, A. (2015). Genome Editing Gene Therapy for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2(4), 343–355. https://doi.org/10.3233/JND-150116

    Article  PubMed  PubMed Central  Google Scholar 

  72. Elangkovan, N., & Dickson, G. (2021). Gene Therapy for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 8(s2), S303–S316. https://doi.org/10.3233/JND-210678

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kapsa, R., Kornberg, A. J., & Byrne, E. (2003). Novel therapies for Duchenne muscular dystrophy. The Lancet Neurology, 2(5), 299–310. https://doi.org/10.1016/s1474-4422(03)00382-x

    Article  CAS  PubMed  Google Scholar 

  74. Ciafaloni, E., & Moxley, R. T. (2008). Treatment options for Duchenne muscular dystrophy. Current Treatment Options in Neurology, 10(2), 86–93. https://doi.org/10.1007/s11940-008-0010-4

    Article  PubMed  Google Scholar 

  75. Iftikhar, M., Frey, J., Shohan, M. J., Malek, S., & Mousa, S. A. (2021). Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacology & Therapeutics, 220, 107719. https://doi.org/10.1016/j.pharmthera.2020.107719

    Article  CAS  Google Scholar 

  76. Kinoshita, I., Vilquin, J. T., Guérette, B., Asselin, I., Roy, R., & Tremblay, J. P. (1994). Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle & Nerve, 17(12), 1407–1415. https://doi.org/10.1002/mus.880171210

    Article  CAS  Google Scholar 

  77. Kinoshita, I., Roy, R., Dugré, F. J., Gravel, C., Roy, B., Goulet, M., Asselin, I., & Tremblay, J. P. (1996). Myoblast transplantation in monkeys: Control of immune response by FK506. Journal of Neuropathology and Experimental Neurology, 55(6), 687–697. https://doi.org/10.1097/00005072-199606000-00002

    Article  CAS  PubMed  Google Scholar 

  78. Skuk, D., Roy, B., Goulet, M., Chapdelaine, P., Bouchard, J. P., Roy, R., Dugré, F. J., Lachance, J. G., Deschênes, L., Hélène, S., Sylvain, M., & Tremblay, J. P. (2004). Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Molecular Therapy : The Journal of the American Society of Gene Therapy, 9(3), 475–482. https://doi.org/10.1016/j.ymthe.2003.11.023

    Article  CAS  PubMed  Google Scholar 

  79. Skuk, D., Goulet, M., Roy, B., Chapdelaine, P., Bouchard, J. P., Roy, R., Dugré, F. J., Sylvain, M., Lachance, J. G., Deschênes, L., Senay, H., & Tremblay, J. P. (2006). Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. Journal of Neuropathology and Experimental Neurology, 65(4), 371–386. https://doi.org/10.1097/01.jnen.0000218443.45782.81

    Article  CAS  PubMed  Google Scholar 

  80. Tremblay, J. P., Skuk, D., Palmieri, B., & Rothstein, D. M. (2009). A case for immunosuppression for myoblast transplantation in Duchenne muscular dystrophy. Molecular Therapy, 17(7), 1122–1124. https://doi.org/10.1038/mt.2009.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Quenneville, S. P., Chapdelaine, P., Rousseau, J., Beaulieu, J., Caron, N. J., Skuk, D., Mills, P., Olivares, E. C., Calos, M. P., & Tremblay, J. P. (2004). Nucleofection of muscle-derived stem cells and myoblasts with phiC31 integrase: Stable expression of a full-length-dystrophin fusion gene by human myoblasts. Molecular Therapy : The Journal of the American Society of Gene Therapy, 10(4), 679–687. https://doi.org/10.1016/j.ymthe.2004.05.034

    Article  CAS  PubMed  Google Scholar 

  82. Li, S., Kimura, E., Fall, B. M., Reyes, M., Angello, J. C., Welikson, R., Hauschka, S. D., & Chamberlain, J. S. (2005). Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin. Gene Therapy, 12(14), 1099–1108. https://doi.org/10.1038/sj.gt.3302505

    Article  CAS  PubMed  Google Scholar 

  83. Quenneville, S. P., Chapdelaine, P., Skuk, D., Paradis, M., Goulet, M., Rousseau, J., Xiao, X., Garcia, L., & Tremblay, J. P. (2007). Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: Human cells and primate models. Molecular Therapy: The Journal of the American Society of Gene Therapy, 15(2), 431–438. https://doi.org/10.1038/sj.mt.6300047

    Article  CAS  PubMed  Google Scholar 

  84. Meng, J., Muntoni, F., & Morgan, J. (2018). CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability. Stem Cell Research, 30, 43–52. https://doi.org/10.1016/j.scr.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sanchez-Ramos, J. R. (2002). Neural cells derived from adult bone marrow and umbilical cord blood. Journal of Neuroscience Research, 69(6), 880–893. https://doi.org/10.1002/jnr.10337

    Article  CAS  PubMed  Google Scholar 

  86. LaBarge, M. A., & Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111(4), 589–601. https://doi.org/10.1016/s0092-8674(02)01078-4

    Article  CAS  PubMed  Google Scholar 

  87. Price, F. D., Kuroda, K., & Rudnicki, M. A. (2007). Stem cell based therapies to treat muscular dystrophy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1772(2), 272–283. https://doi.org/10.1016/j.bbadis.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  88. Cuende, N., Rico, L., & Herrera, C. (2012). Concise review: Bone marrow mononuclear cells for the treatment of ischemic syndromes: Medicinal product or cell transplantation? Stem Cells Translational Medicine, 1(5), 403–408. https://doi.org/10.5966/sctm.2011-0064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sharma, A., Sane, H., Gokulchandra, N., Sharan, R., Paranjape, A., Kulkarni, P., Yadav, J., & Badhe, P. (2016). Effect of Cellular Therapy in Progression of Becker’s Muscular Dystrophy: A Case Study. European Journal of Translational Myology, 26(1), 5522. https://doi.org/10.4081/ejtm.2016.5522

    Article  PubMed  PubMed Central  Google Scholar 

  90. Burdon, T. J., Paul, A., Noiseux, N., Prakash, S., & Shum-Tim, D. (2011). Bone marrow stem cell derived paracrine factors for regenerative medicine: Current perspectives and therapeutic potential. Bone Marrow Research, 2011, 207326. https://doi.org/10.1155/2011/207326

    Article  PubMed  Google Scholar 

  91. Quattrocelli, M., Palazzolo, G., Perini, I., Crippa, S., Cassano, M., & Sampaolesi, M. (2012). Mouse and human mesoangioblasts: Isolation and characterization from adult skeletal muscles. Methods in Molecular Biology, 798, 65–76. https://doi.org/10.1007/978-1-61779-343-1_4

    Article  CAS  PubMed  Google Scholar 

  92. Bonfanti, C., Rossi, G., Tedesco, F. S., Giannotta, M., Benedetti, S., Tonlorenzi, R., Antonini, S., Marazzi, G., Dejana, E., Sassoon, D., Cossu, G., & Messina, G. (2015). PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nature Communications, 6, 6364. https://doi.org/10.1038/ncomms7364

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AA: Conceived and designed the analysis, collected data, analyzed results, drafted the article. EK: Study conception and design, revised the article critically for important intellectual content.

Corresponding author

Correspondence to Ayberk Akat.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Participate

Both authors hereby provide our consent to participate in the submission of the manuscript titled "Cell Therapy Strategies for Duchenne Muscular Dystrophy: A Systematic Review of Clinical Applications" to the Stem Cell Review and Reports Journal. We understand and agree to the following terms and conditions:

We confirm that we have read, reviewed, and contributed to the creation of the manuscript titled "Cell Therapy Strategies for Duchenne Muscular Dystrophy: A Systematic Review of Clinical Applications". We are aware of its content and have made substantial intellectual contributions to its development. We understand that the submission of this manuscript is being made to the Stem Cell Review and Reports Journal and that it is subject to the journal's peer-review process and editorial policies. We acknowledge that we have reviewed and complied with the journal's author guidelines and ethical standards for manuscript submission, including the guidelines on authorship, originality, and conflicts of interest. We understand that the manuscript may be reviewed by independent experts and that revisions may be required before publication. We agree that the corresponding author, Ayberk Akat Ph.D., is authorized to act on our behalf regarding all matters related to the submission, review, and publication of this manuscript, including correspondence with the journal's editorial team. We affirm that the content of this manuscript is original, has not been previously published elsewhere, and is not under consideration for publication in any other journal. We understand that if the manuscript is accepted for publication, it will be made available to the public through the Stem Cell Review and Reports Journal and other platforms. We grant the Stem Cell Review and Reports Journal the right to use and distribute the manuscript in accordance with its publication policies, including online and in print. We confirm that all co-authors have been informed of and consent to the submission of this manuscript to the Stem Cell Review and Reports Journal. We acknowledge that any changes to authorship, conflicts of interest, or other relevant information will be promptly communicated to the journal's editorial team. We hereby provide our consent to participate in the submission of this manuscript and confirm that we have reviewed and agree to the terms outlined above.

Consent for Publication

All authors reviewed the results and approved the final version of the manuscript to be published. All authors hereby give consent for the publication of our personal information in the Stem Cell Review and Reports Journal. This information includes, but is not limited to, our name, age, sex, and any other information that is included in the article. We also understand that we are granting the publisher the exclusive right to publish the article in all languages, in whole or in part. We retain the right to use the article for our own purposes, such as teaching, lecturing, and presenting at conferences.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akat, A., Karaöz, E. Cell Therapy Strategies on Duchenne Muscular Dystrophy: A Systematic Review of Clinical Applications. Stem Cell Rev and Rep 20, 138–158 (2024). https://doi.org/10.1007/s12015-023-10653-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10653-8

Keywords

Navigation