Skip to main content
Log in

AUTS2 Controls Neuronal Lineage Choice Through a Novel PRC1-Independent Complex and BMP Inhibition

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Despite a prominent risk factor for Neurodevelopmental disorders (NDD), it remains unclear how Autism Susceptibility Candidate 2 (AUTS2) controls the neurodevelopmental program. Our studies investigated the role of AUTS2 in neuronal differentiation and discovered that AUTS2, together with WDR68 and SKI, forms a novel protein complex (AWS) specifically in neuronal progenitors and promotes neuronal differentiation through inhibiting BMP signaling. Genomic and biochemical analyses demonstrated that the AWS complex achieves this effect by recruiting the CUL4 E3 ubiquitin ligase complex to mediate poly-ubiquitination and subsequent proteasomal degradation of phosphorylated SMAD1/5/9. Furthermore, using primary cortical neurons, we observed aberrant BMP signaling and dysregulated expression of neuronal genes upon manipulating the AWS complex, indicating that the AWS-CUL4-BMP axis plays a role in regulating neuronal lineage specification in vivo. Thus, our findings uncover a sophisticated cellular signaling network mobilized by a prominent NDD risk factor, presenting multiple potential therapeutic targets for NDD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

To review GEO accession GSE178746, use the following link and enter token (evezqiqwhbqldol), https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178746.

References

  1. Abbas, T., Sivaprasad, U., Terai, K., Amador, V., Pagano, M., & Dutta, A. (2008). PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes & Development, 22, 2496–2506.

    Article  CAS  Google Scholar 

  2. Bedogni, F., Hodge, R. D., Nelson, B. R., Frederick, E. A., Shiba, N., Daza, R. A., & Hevner, R. F. (2010). Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology. Gene Expression Patterns, 10, 9–15.

    Article  CAS  Google Scholar 

  3. Berk, M., Desai, S. Y., Heyman, H. C., & Colmenares, C. (1997). Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial patterning, and skeletal muscle development. Genes & Development, 11, 2029–2039.

    Article  CAS  Google Scholar 

  4. Beunders, G., Voorhoeve, E., Golzio, C., Pardo, L. M., Rosenfeld, J. A., Talkowski, M. E., Simonic, I., Lionel, A. C., Vergult, S., Pyatt, R. E., et al. (2013). Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus. American Journal of Human Genetics, 92, 210–220.

    Article  CAS  Google Scholar 

  5. Beunders, G., van de Kamp, J., Vasudevan, P., Morton, J., Smets, K., Kleefstra, T., de Munnik, S. A., Schuurs-Hoeijmakers, J., Ceulemans, B., Zollino, M., et al. (2016). A detailed clinical analysis of 13 patients with AUTS2 syndrome further delineates the phenotypic spectrum and underscores the behavioural phenotype. Journal of Medical Genetics, 53, 523–532.

    Article  CAS  Google Scholar 

  6. Bibel, M., Richter, J., Schrenk, K., Tucker, K. L., Staiger, V., Korte, M., Goetz, M., & Barde, Y. A. (2004). Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nature Neuroscience, 7, 1003–1009.

    Article  CAS  Google Scholar 

  7. Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34, 525–527.

    Article  CAS  Google Scholar 

  8. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275–280.

    Article  CAS  Google Scholar 

  9. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (80-. )., 339, 819–823.

    Article  CAS  Google Scholar 

  10. Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367–1372.

    Article  CAS  Google Scholar 

  11. Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4, 1–11.

    Article  Google Scholar 

  12. Gao, Z., Zhang, J., Bonasio, R., Strino, F., Sawai, A., Parisi, F., Kluger, Y., & Reinberg, D. (2012). PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Molecular Cell, 45, 344–356.

    Article  CAS  Google Scholar 

  13. Gao, Z., Lee, P., Stafford, J. M., Schimmelmann, M. V., Schaefer, A., & Reinberg, D. (2014). An AUTS2-Polycomb complex activates gene expression in the CNS. Nature, 516, 349–354.

    Article  CAS  Google Scholar 

  14. Graf, D., Malik, Z., Hayano, S., & Mishina, Y. (2016). Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine & Growth Factor Reviews, 27, 129–139.

    Article  CAS  Google Scholar 

  15. Higa, L. A., Wu, M., Ye, T., Kobayashi, R., Sun, H., & Zhang, H. (2006). CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nature Cell Biology, 8, 1277–1283.

    Article  CAS  Google Scholar 

  16. Hori, K., Nagai, T., Shan, W., Sakamoto, A., Taya, S., Hashimoto, R., Hayashi, T., Abe, M., Yamazaki, M., Nakao, K., et al. (2014). Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Reports, 9, 2166–2179.

    Article  CAS  Google Scholar 

  17. Hori, K., Nagai, T., Shan, W., Sakamoto, A., Abe, M., Yamazaki, M., Sakimura, K., Yamada, K., & Hoshino, M. (2015). Heterozygous disruption of autism susceptibility candidate 2 causes impaired emotional control and cognitive memory. PLoS ONE, 10, e0145979.

    Article  Google Scholar 

  18. Jin, J., Arias, E. E., Chen, J., Harper, J. W., & Walter, J. C. (2006). A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which Is required for S phase destruction of the replication factor Cdt1. Molecular Cell, 23, 709–721.

    Article  CAS  Google Scholar 

  19. Li, D., & Roberts, R. (2001). WD-repeat proteins: Structure characteristics, biological function, and their involvement in human diseases. Cellular and Molecular Life Sciences, 58, 2085–2097.

    Article  CAS  Google Scholar 

  20. Li, Z., & Chen, Y. G. (2013). Functions of BMP signaling in embryonic stem cell fate determination. Experimental Cell Research, 319, 113–119.

    Article  CAS  Google Scholar 

  21. Liu, S., Aldinger, K. A., Cheng, C. V., Kiyama, T., Dave, M., McNamara, H. K., Zhao, W., Stafford, J. M., Descostes, N., Lee, P., et al. (2021). NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Molecular Cell, 81, 4663–4676.e8.

    Article  CAS  Google Scholar 

  22. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 1–21.

    Article  Google Scholar 

  23. Luo, K., Stroschein, S. L., Wang, W., Chen, D., Martens, E., Zhou, S., & Zhou, Q. (1999). The Ski oncoprotein interacts with the Smad proteins to repress TGF̄ signaling. Genes & Development, 13, 2196–2206.

    Article  CAS  Google Scholar 

  24. Massagué, J. (2012). TGFβ signalling in context. Nature Reviews Molecular Cell Biology, 13, 616–630.

    Article  Google Scholar 

  25. Miyata, Y., Shibata, T., Aoshima, M., Tsubata, T., & Nishida, E. (2014). The molecular chaperone TRiC/CCT binds to the Trp-Asp 40 (WD40) repeat protein WDR68 and promotes its folding, protein kinase DYRK1A binding, and nuclear accumulation. Journal of Biological Chemistry, 289, 33320–33332.

    Article  CAS  Google Scholar 

  26. Monderer-Rothkoff, G., Tal, N., Risman, M., Shani, O., Nissim-Rafinia, M., Malki-Feldman, L., Medvedeva, V., Groszer, M., Meshorer, E., & Shifman, S. (2021). AUTS2 isoforms control neuronal differentiation. Molecular Psychiatry, 26, 666–681.

    Article  Google Scholar 

  27. Morikawa, M., Koinuma, D., Tsutsumi, S., Vasilaki, E., Kanki, Y., Heldin, C. H., Aburatani, H., & Miyazono, K. (2011). ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Research, 39, 8712–8727.

    Article  CAS  Google Scholar 

  28. Oksenberg, N., & Ahituv, N. (2013). The role of AUTS2 in neurodevelopment and human evolution. Trends in Genetics, 29, 600–608.

    Article  CAS  Google Scholar 

  29. Oksenberg, N., Stevison, L., Wall, J. D., & Ahituv, N. (2013). Function and Regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genetics, 9, e1003221.

    Article  CAS  Google Scholar 

  30. Russo, D., Della Ragione, F., Rizzo, R., Sugiyama, E., Scalabrì, F., Hori, K., Capasso, S., Sticco, L., Fioriniello, S., De Gregorio, R., et al. (2018). Glycosphingolipid metabolic reprogramming drives neural differentiation. The EMBO Journal, 37, e97674.

  31. Stirnimann, C., Petsalaki, E., Russell, R., & Muller, C. (2010). WD40 protiens propel cellular networks. Trends in Biochemical Sciences, 35, 531–538.

    Article  Google Scholar 

  32. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q., & Luo, K. (1999). Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science, 286, 771–774.

    Article  CAS  Google Scholar 

  33. Sun, Y., Liu, X., Eaton, E. N., Lane, W. S., Lodish, H. F., & Weinberg, R. A. (1999). Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling. Molecular Cell, 4, 499–509.

    Article  CAS  Google Scholar 

  34. Talkowski, M. E., Rosenfeld, J. A., Blumenthal, I., Pillalamarri, V., Chiang, C., Heilbut, A., Ernst, C., Hanscom, C., Rossin, E., Lindgren, A. M., et al. (2012). Sequencing chromosomal abnormalities reveals neurodevelopmental Loci that confer risk across diagnostic boundaries. Cell, 149, 525–537.

    Article  CAS  Google Scholar 

  35. Wang, Q., Geng, Z., Gong, Y., Warren, K., Zheng, H., Imamura, Y., & Gao, Z. (2018). WDR68 is essential for the transcriptional activation of the PRC1-AUTS2 complex and neuronal differentiation of mouse embryonic stem cells. Stem Cell Research, 33, 206–214.

    Article  CAS  Google Scholar 

  36. Watabe, T., & Miyazono, K. (2009). Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Research, 19, 103–115.

    Article  CAS  Google Scholar 

  37. Yao, M., Zhou, X., Zhou, J., Gong, S., Hu, G., Li, J., Huang, K., Lai, P., Shi, G., Hutchins, A. P., et al. (2018). PCGF5 is required for neural differentiation of embryonic stem cells. Nature Communications, 9, 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kathleen Mulder for the discussion of the experiments. We thank Dr. Abraham Thomas and the Microscopy Imaging Core for assistance in imaging and Dr. Yuka Imamura and the Genome Sciences Facility for assistance in deep sequencing. The Auts2 mouse strain is a gift from Dr. Danny Reinberg. This work was supported by the following NIH grants: R35GM133496 to Z. Gao; R00AA024837 to J. Stafford; R35ES031707 to Y. Wang. Z. Geng, Q.W., W.M., T.W., J.C., and E.G. conducted the experiments; R.H. and D.D. provided guidance and help on the immunofluorescence analysis; Z. Gao, J.S., and Y.W. designed the experiments; Z.Geng and Z.Gao wrote the paper. All authors contributed to the discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., Wang, Q., Miao, W. et al. AUTS2 Controls Neuronal Lineage Choice Through a Novel PRC1-Independent Complex and BMP Inhibition. Stem Cell Rev and Rep 19, 531–549 (2023). https://doi.org/10.1007/s12015-022-10459-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10459-0

Keywords

Navigation