Skip to main content
Log in

Activation of Autophagy Ameliorates Age-Related Neurogenesis Decline and Neurodysfunction in Adult Mice

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adult neurogenesis is the ongoing generation of functional new neurons from neural progenitor cells (NPCs) in the mammalian brain. However, this process declines with aging, which is implicated in the recession of brain function and neurodegeneration. Understanding the mechanism of adult neurogenesis and stimulating neurogenesis will benefit the mitigation of neurodegenerative diseases. Autophagy, a highly conserved process of cellular degradation, is essential for maintaining cellular homeostasis and normal function. Whether and how autophagy affects adult neurogenesis remains poorly understood. In present study, we revealed a close connection between impaired autophagy and adult neurogenetic decline. Expression of autophagy-related genes and autophagic activity were significantly declined in the middle-adult subventricular/subgranular zone (SVZ/SGZ) homogenates and cultured NPCs, and inhibiting autophagy by siRNA interference resulted in impaired proliferation and differentiation of NPCs. Conversely, stimulating autophagy by rapamycin not only revitalized the viability of middle-adult NPCs, but also facilitated the neurogenesis in middle-adult SVZ/SGZ. More importantly, autophagic activation by rapamycin also ameliorated the olfactory sensitivity and cognitional capacities in middle-adult mice. Taken together, our results reveal that compromised autophagy is involved in the decline of adult neurogenesis, which could be reversed by autophagy activation. It also shed light on the regulation of adult neurogenesis and paves the way for developing a therapeutic strategy for aging and neurodegenerative diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Gage, F. H. (2000). Mammalian neural stem cells. Science, 287(5457), 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660.

    Article  CAS  PubMed  Google Scholar 

  3. Seki, T., Hori, T., Miyata, H., Maehara, M., & Namba, T. (2019). Analysis of proliferating neuronal progenitors and immature neurons in the human hippocampus surgically removed from control and epileptic patients. Science and Reports, 9(1), 18194.

    Article  CAS  Google Scholar 

  4. Ho, N. F., Hooker, J. M., Sahay, A., Holt, D. J., & Roffman, J. L. (2013). In vivo imaging of adult human hippocampal neurogenesis: Progress, pitfalls and promise. Molecular Psychiatry, 18(4), 404–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar, A., Pareek, V., Faiq, M. A., Ghosh, S. K., & Kumari, C. (2019). Adult neurogenesis in humans: A review of basic concepts, history, current research, and clinical implications. Innov Clin Neurosci, 16(5–6), 30–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., & Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696), 377–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Romine, J., Gao, X., Xu, X. M., So, K. F., & Chen, J. (2015). The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mtor pathway activation. Neurobiology of Aging, 36(4), 1716–1726.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, Y., Liu, X., He, Z., Niu, X., Shi, W., Ding, J. M., & Lu, L. (2016). Essential role of proteasomes in maintaining self-renewal in neural progenitor cells. Science and Reports, 6, 19752.

    Article  CAS  Google Scholar 

  9. Kalamakis, G., Brune, D., Ravichandran, S., Bolz, J., Fan, W., Ziebell, F., & Martin-Villalba, A. (2019). Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell, 176(6), 1407–1419 e1414.

  10. Friedman, L. G., Lachenmayer, M. L., Wang, J., He, L., Poulose, S. M., Komatsu, M., & Yue, Z. (2012). Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and lrrk2 in the brain. Journal of Neuroscience, 32(22), 7585–7593.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandes, H. J., Hartfield, E. M., Christian, H. C., Emmanoulidou, E., Zheng, Y., Booth, H., & Wade-Martins, R. (2016). Er stress and autophagic perturbations lead to elevated extracellular alpha-synuclein in gba-n370s parkinson’s ipsc-derived dopamine neurons. Stem Cell Reports, 6(3), 342–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hunn, B. H. M., Vingill, S., Threlfell, S., Alegre-Abarrategui, J., Magdelyns, M., Deltheil, T., & Wade-Martins, R. (2019). Impairment of macroautophagy in dopamine neurons has opposing effects on parkinsonian pathology and behavior. Cell Rep, 29(4), 920–931 e927.

  13. Wang, C., Liang, C. C., Bian, Z. C., Zhu, Y., & Guan, J. L. (2013). Fip200 is required for maintenance and differentiation of postnatal neural stem cells. Nature Neuroscience, 16(5), 532–542.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yazdankhah, M., Farioli-Vecchioli, S., Tonchev, A. B., Stoykova, A., & Cecconi, F. (2014). The autophagy regulators ambra1 and beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis, 5, e1403.

  15. Xi, Y., Dhaliwal, J. S., Ceizar, M., Vaculik, M., Kumar, K. L., & Lagace, D. C. (2016). Knockout of atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis, 7, e2127.

  16. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., & Tanaka, K. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, D., Pang, S., Feng, X., Huang, W., Hawley, R. G., & Yan, B. (2013). Genetic analysis of the atg7 gene promoter in sporadic parkinson’s disease. Neuroscience Letters, 534, 193–198.

    Article  CAS  PubMed  Google Scholar 

  18. Vazquez, P., Arroba, A. I., Cecconi, F., de la Rosa, E. J., Boya, P., & de Pablo, F. (2012). Atg5 and ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy, 8(2), 187–199.

    Article  CAS  PubMed  Google Scholar 

  19. Revuelta, M., & Matheu, A. (2017). Autophagy in stem cell aging. Aging Cell, 16(5), 912–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., & Rubinsztein, D. C. (2004). Inhibition of mtor induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of huntington disease. Nature Genetics, 36(6), 585–595.

    Article  CAS  PubMed  Google Scholar 

  21. Singh, A. K., Singh, S., Tripathi, V. K., Bissoyi, A., Garg, G., & Rizvi, S. I. (2019). Rapamycin confers neuroprotection against aging-induced oxidative stress, mitochondrial dysfunction, and neurodegeneration in old rats through activation of autophagy. Rejuvenation Research, 22(1), 60–70.

    Article  CAS  PubMed  Google Scholar 

  22. Raman, L., Kong, X., & Kernie, S. G. (2013). Pharmacological inhibition of the mtor pathway impairs hippocampal development in mice. Neuroscience Letters, 541, 9–14.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X., Seekaew, P., Gao, X., & Chen, J. (2016). Traumatic brain injury stimulates neural stem cell proliferation via mammalian target of rapamycin signaling pathway activation. eNeuro, 3(5), 1–14.

  24. Niu, X., Zhao, Y., Yang, N., Zhao, X., Zhang, W., Bai, X., & Lu, L. (2020). Proteasome activation by insulin-like growth factor-1/nuclear factor erythroid 2-related factor 2 signaling promotes exercise-induced neurogenesis. Stem Cells, 38(2), 246–260.

    Article  CAS  PubMed  Google Scholar 

  25. Breton-Provencher, V., Lemasson, M., Peralta, M. R., 3rd., & Saghatelyan, A. (2009). Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. Journal of Neuroscience, 29(48), 15245–15257.

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi, H., Ogawa, Y., Yoshihara, S., Asahina, R., Kinoshita, M., Kitano, T., & Tsuboi, A. (2016). A subtype of olfactory bulb interneurons is required for odor detection and discrimination behaviors. Journal of Neuroscience, 36(31), 8210–8227.

    Article  CAS  PubMed  Google Scholar 

  27. Fendt, M., & Endres, T. (2008). 2,3,5-trimethyl-3-thiazoline (tmt), a component of fox odor - just repugnant or really fear-inducing? Neuroscience and Biobehavioral Reviews, 32(7), 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi, L. K., Nakashima, B. R., Hong, H., & Watanabe, K. (2005). The smell of danger: A behavioral and neural analysis of predator odor-induced fear. Neuroscience and Biobehavioral Reviews, 29(8), 1157–1167.

    Article  PubMed  Google Scholar 

  29. Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H., Acevedo Arozena, A., & Zughaier, S. M. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12(1), 1–222.

  30. Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140(3), 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pugsley, H. R. (2017). Quantifying autophagy: Measuring lc3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry. Methods, 112, 147–156.

    Article  CAS  PubMed  Google Scholar 

  32. Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., & Reggiori, F. (2018). Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 14(8), 1435–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith, L. K., White, C. W., 3rd., & Villeda, S. A. (2018). The systemic environment: At the interface of aging and adult neurogenesis. Cell and Tissue Research, 371(1), 105–113.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng, Z., Li, Y. Q., & Wong, C. S. (2016). Effects of aging on hippocampal neurogenesis after irradiation. International Journal of Radiation Oncology Biology Physics, 94(5), 1181–1189.

    Article  Google Scholar 

  35. Xie, C., Ginet, V., Sun, Y., Koike, M., Zhou, K., Li, T., & Zhu, C. (2016). Neuroprotection by selective neuronal deletion of atg7 in neonatal brain injury. Autophagy, 12(2), 410–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Su, L. Y., Luo, R., Liu, Q., Su, J. R., Yang, L. X., Ding, Y. Q., & Yao, Y. G. (2017). Atg5- and atg7-dependent autophagy in dopaminergic neurons regulates cellular and behavioral responses to morphine. Autophagy, 13(9), 1496–1511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Donde, A., Sun, M., Jeong, Y. H., Wen, X., Ling, J., Lin, S., & Wong, P. C. (2020). Upregulation of atg7 attenuates motor neuron dysfunction associated with depletion of tardbp/tdp-43. Autophagy, 16(4), 672–682.

    Article  CAS  PubMed  Google Scholar 

  38. Gao, W., Chen, Z., Wang, W., & Stang, M. T. (2013). E1-like activating enzyme atg7 is preferentially sequestered into p62 aggregates via its interaction with lc3-i. PLoS One, 8(9), e73229.

  39. Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., & Johansen, T. (2005). P62/sqstm1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. Journal of Cell Biology, 171(4), 603–614.

    Article  Google Scholar 

  40. Liu, Q., Zhou, X., Li, C., Zhang, X., & Li, C. L. (2018). Rapamycin promotes the anticancer action of dihydroartemisinin in breast cancer mda-mb-231 cells by regulating expression of atg7 and dapk. Oncology Letters, 15(4), 5781–5786.

    PubMed  PubMed Central  Google Scholar 

  41. Kim, Y. C., & Guan, K. L. (2015). Mtor: A pharmacologic target for autophagy regulation. The Journal of Clinical Investigation, 125(1), 25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, G., Miskimen, K. L., Wang, Z., Xie, X. Y., Tse, W., Gouilleux, F., & Bunting, K. D. (2010). Effective targeting of stat5-mediated survival in myeloproliferative neoplasms using abt-737 combined with rapamycin. Leukemia, 24(8), 1397–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nature Reviews Neuroscience, 11(5), 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cutler, R. R., & Kokovay, E. (2020). Rejuvenating subventricular zone neurogenesis in the aging brain. Current Opinion in Pharmacology, 50, 1–8.

    Article  CAS  PubMed  Google Scholar 

  46. Katsimpardi, L., & Lledo, P. M. (2018). Regulation of neurogenesis in the adult and aging brain. Current Opinion in Neurobiology, 53, 131–138.

    Article  CAS  PubMed  Google Scholar 

  47. Livingston-Thomas, J., Nelson, P., Karthikeyan, S., Antonescu, S., Jeffers, M. S., Marzolini, S., & Corbett, D. (2016). Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics, 13(2), 395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fimia, G. M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., & Cecconi, F. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature, 447(7148), 1121–1125.

    Article  CAS  PubMed  Google Scholar 

  49. Mizushima, N., & Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature Cell Biology, 12(9), 823–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casares-Crespo, L., Calatayud-Baselga, I., Garcia-Corzo, L., & Mira, H. (2018). On the role of basal autophagy in adult neural stem cells and neurogenesis. Frontiers in Cellular Neuroscience, 12, 339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, X., Fleming, A., Ricketts, T., Pavel, M., Virgin, H., Menzies, F. M., & Rubinsztein, D. C. (2016). Autophagy regulates notch degradation and modulates stem cell development and neurogenesis. Nature Communications, 7, 10533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nikoletopoulou, V., Papandreou, M. E., & Tavernarakis, N. (2015). Autophagy in the physiology and pathology of the central nervous system. Cell Death and Differentiation, 22(3), 398–407.

    Article  CAS  PubMed  Google Scholar 

  53. Menzies, F. M., Fleming, A., Caricasole, A., Bento, C. F., Andrews, S. P., Ashkenazi, A., & Rubinsztein, D. C. (2017). Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron, 93(5), 1015–1034.

    Article  CAS  PubMed  Google Scholar 

  54. Komatsu, M., Wang, Q. J., Holstein, G. R., Friedrich, V. L., Jr., Iwata, J., Kominami, E., & Yue, Z. (2007). Essential role for autophagy protein atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A, 104(36), 14489–14494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gupta, V. K., Scheunemann, L., Eisenberg, T., Mertel, S., Bhukel, A., Koemans, T. S., & Sigrist, S. J. (2013). Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nature Neuroscience, 16(10), 1453–1460.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Y., Zhou, K., Li, T., Xu, Y., Xie, C., Sun, Y., & Zhu, C. (2017). Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death Dis, 8(3), e2694.

  57. Wang, Y., Zhou, K., Li, T., Xu, Y., Xie, C., Sun, Y., & Zhu, C. (2019). Selective neural deletion of the atg7 gene reduces irradiation-induced cerebellar white matter injury in the juvenile mouse brain by ameliorating oligodendrocyte progenitor cell loss. Frontiers in Cellular Neuroscience, 13, 241.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Selvakumar, G. P., Iyer, S. S., Kempuraj, D., Ahmed, M. E., Thangavel, R., Dubova, I., & Zaheer, A. (2019). Molecular association of glia maturation factor with the autophagic machinery in rat dopaminergic neurons: A role for endoplasmic reticulum stress and mapk activation. Molecular Neurobiology, 56(6), 3865–3881.

    Article  CAS  PubMed  Google Scholar 

  59. Spilman, P., Podlutskaya, N., Hart, M. J., Debnath, J., Gorostiza, O., Bredesen, D., & Galvan, V. (2010). Inhibition of mtor by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of alzheimer's disease. PLoS One, 5(4), e9979.

  60. Majumder, S., Caccamo, A., Medina, D. X., Benavides, A. D., Javors, M. A., Kraig, E., & Oddo, S. (2012). Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing il-1beta and enhancing nmda signaling. Aging Cell, 11(2), 326–335.

    Article  CAS  PubMed  Google Scholar 

  61. Yamada, J., & Jinno, S. (2019). Potential link between antidepressant-like effects of ketamine and promotion of adult neurogenesis in the ventral hippocampus of mice. Neuropharmacology, 158, 107710.

  62. Kodali, M., Attaluri, S., Madhu, L. N., Shuai, B., Upadhya, R., Gonzalez, J. J., & Shetty, A. K. (2021). Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell, 20(2), e13277.

  63. Schmeisser, K., & Parker, J. A. (2019). Pleiotropic effects of mtor and autophagy during development and aging. Front Cell Dev Biol, 7, 192.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Paliouras, G. N., Hamilton, L. K., Aumont, A., Joppe, S. E., Barnabe-Heider, F., & Fernandes, K. J. (2012). Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. Journal of Neuroscience, 32(43), 15012–15026.

    Article  CAS  PubMed  Google Scholar 

  65. Blagosklonny, M. V. (2019). Rapamycin for longevity: Opinion article. Aging (Albany NY), 11(19), 8048–8067.

    Article  CAS  Google Scholar 

  66. Kaeberlein, M., & Galvan, V. (2019). Rapamycin and alzheimer's disease: Time for a clinical trial? Sci Transl Med, 11(476), eaar4289.

Download references

Funding

This work was supported by National Natural Science Foundation of China (81200254, 81571381), Research Project Supported by Shanxi Scholarship Council of China (2020–085) and Teaching Innovation Programs of Higher Education Institutions in Shanxi (J2020094).

Author information

Authors and Affiliations

Authors

Contributions

N.Y., XQ.L., XJ.N., XQ.W. and R.J. perfomed and analyzed the experiments. N.Y.and JR.W. helped in some animal experiments. KL. L. and L.L. conceived and designed the research. The manuscript was written by XQ. L., L.L. and CW. Z.

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kah-Leong Lim or Li Lu.

Ethics declarations

Ethics Approval

All animal studies were approved by the Committee for Animal Care and Ethical Review at Shanxi Medical University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Liu, X., Niu, X. et al. Activation of Autophagy Ameliorates Age-Related Neurogenesis Decline and Neurodysfunction in Adult Mice. Stem Cell Rev and Rep 18, 626–641 (2022). https://doi.org/10.1007/s12015-021-10265-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10265-0

Keywords

Navigation