Abstract
Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.
Graphic Abstract






References
Jones, T. S., & Holland, E. C. (2012). Standard of care therapy for malignant glioma and its effect on tumor and stromal cells. Oncogene, 31(16), 1995–2006. https://doi.org/10.1038/onc.2011.398
Lima, F. R. S., Kahn, S. A., Soletti, R. C., Biasoli, D., Alves, T., da Fonseca, A. C. C., … Moura-Neto, V. (2012). Glioblastoma: Therapeutic challenges, what lies ahead. Biochimica Et Biophysica Acta, 1826(2), 338–349. https://doi.org/10.1016/j.bbcan.2012.05.004
Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., … Gimble, J. M. (2006). Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells (Dayton, Ohio), 24(2), 376–385. https://doi.org/10.1634/stemcells.2005-0234
Bexell, D., Svensson, A., & Bengzon, J. (2013). Stem cell-based therapy for malignant glioma. Cancer Treatment Reviews, 39(4), 358–365. https://doi.org/10.1016/j.ctrv.2012.06.006
Cavarretta, I. T., Altanerova, V., Matuskova, M., Kucerova, L., Culig, Z., & Altaner, C. (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(1), 223–231. https://doi.org/10.1038/mt.2009.237
Kucerova, L., Altanerova, V., Matuskova, M., Tyciakova, S., & Altaner, C. (2007). Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Research, 67(13), 6304–6313. https://doi.org/10.1158/0008-5472.CAN-06-4024
Altanerova, V., Cihova, M., Babic, M., Rychly, B., Ondicova, K., Mravec, B., & Altaner, C. (2012). Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase: Uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. International Journal of Cancer, 130(10), 2455–2463. https://doi.org/10.1002/ijc.26278
Barcellos-de-Souza, P., Gori, V., Bambi, F., & Chiarugi, P. (2013). Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochimica Et Biophysica Acta, 1836(2), 321–335. https://doi.org/10.1016/j.bbcan.2013.10.004
Adjei, I. M., & Blanka, S. (2015). Modulation of the tumor microenvironment for cancer treatment: A biomaterials approach. Journal of Functional Biomaterials, 6(1), 81–103. https://doi.org/10.3390/jfb6010081
Fomchenko, E. I., Dougherty, J. D., Helmy, K. Y., Katz, A. M., Pietras, A., Brennan, C., … Holland, E. C. (2011). Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PloS ONE, 6(7), e20605. https://doi.org/10.1371/journal.pone.0020605
Zhu, W., Huang, L., Li, Y., Qian, H., Shan, X., Yan, Y., … Xu, W.-R. (2011). Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth. Cell Cycle (Georgetown, Tex.), 10(18), 3198–3207. https://doi.org/10.4161/cc.10.18.17638
Chien, L.-Y., Hsiao, J.-K., Hsu, S.-C., Yao, M., Lu, C.-W., Liu, H.-M., … Huang, D.-M. (2011). In vivo magnetic resonance imaging of cell tropism, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials, 32(12), 3275–3284. https://doi.org/10.1016/j.biomaterials.2011.01.042
Giuffrida, D., Rogers, I. M., Nagy, A., Calogero, A. E., Brown, T. J., & Casper, R. F. (2009). Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Proliferation, 42(6), 788–798. https://doi.org/10.1111/j.1365-2184.2009.00640.x
Sun, B., Roh, K.-H., Park, J.-R., Lee, S.-R., Park, S.-B., Jung, J.-W., … Kang, K.-S. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11(3), 289–298. https://doi.org/10.1080/14653240902807026
Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., … Weinberg, R. A. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. https://doi.org/10.1038/nature06188
De Luca, A., Lamura, L., Gallo, M., Maffia, V., & Normanno, N. (2012). Mesenchymal stem cell-derived interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. Journal of Cellular Biochemistry, 113(11), 3363–3370. https://doi.org/10.1002/jcb.24212
Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., … Herr, I. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99(4), 622–631. https://doi.org/10.1038/sj.bjc.6604508
Kidd, S., Spaeth, E., Klopp, A., Andreeff, M., Hall, B., & Marini, F. C. (2008). The (in) auspicious role of mesenchymal stromal cells in cancer: Be it friend or foe. Cytotherapy, 10(7), 657–667. https://doi.org/10.1080/14653240802486517
Wong, R. S. Y. (2011). Mesenchymal stem cells: Angels or demons? Journal of Biomedicine & Biotechnology, 2011, 459510. https://doi.org/10.1155/2011/459510
Onzi, G. R., Ledur, P. F., Hainzenreder, L. D., Bertoni, A. P. S., Silva, A. O., Lenz, G., & Wink, M. R. (2016). Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy, 18(7), 828–837. https://doi.org/10.1016/j.jcyt.2016.03.299
Iser, I. C., Ceschini, S. M., Onzi, G. R., Bertoni, A. P. S., Lenz, G., & Wink, M. R. (2016). Conditioned medium from adipose-derived stem cells (ADSCs) promotes epithelial-to-mesenchymal-like transition (EMT-Like) in glioma cells in vitro. Molecular Neurobiology, 53(10), 7184–7199. https://doi.org/10.1007/s12035-015-9585-4
Wink, M. R., Braganhol, E., Tamajusuku, A. S. K., Casali, E. A., Karl, J., Barreto-Chaves, M. L., … Battastini, A. M. O. (2003). Extracellular adenine nucleotides metabolism in astrocyte cultures from different brain regions. Neurochemistry International, 43(7), 621–628. https://doi.org/10.1016/s0197-0186(03)00094-9
da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213. https://doi.org/10.1242/jcs.02932
Takano, T., Lin, J. H., Arcuino, G., Gao, Q., Yang, J., & Nedergaard, M. (2001). Glutamate release promotes growth of malignant gliomas. Nature Medicine, 7(9), 1010–1015. https://doi.org/10.1038/nm0901-1010
Morrone, F. B., Oliveira, D. L., Gamermann, P., Stella, J., Wofchuk, S., Wink, M. R., … Battastini, A. M. O. (2006). In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer, 6, 226. https://doi.org/10.1186/1471-2407-6-226
Xavier, L. L., Viola, G. G., Ferraz, A. C., Da Cunha, C., Deonizio, J. M. D., Netto, C. A., & Achaval, M. (2005). A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Research. Brain Research Protocols, 16(1–3), 58–64. https://doi.org/10.1016/j.brainresprot.2005.10.002
Azambuja, J. H., Schuh, R. S., Michels, L. R., Gelsleichter, N. E., Beckenkamp, L. R., Iser, I. C., … Braganhol, E. (2020). Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: A new therapeutical approach. Molecular Neurobiology, 57(2), 635–649. https://doi.org/10.1007/s12035-019-01730-6
Azambuja, J. H., Gelsleichter, N. E., Beckenkamp, L. R., Iser, I. C., Fernandes, M. C., Figueiró, F., … Braganhol, E. (2019). CD73 downregulation decreases in vitro and in vivo glioblastoma growth. Molecular Neurobiology, 56(5), 3260–3279. https://doi.org/10.1007/s12035-018-1240-4
Braganhol, E., Zanin, R. F., Bernardi, A., Bergamin, L. S., Cappellari, A. R., Campesato, L. F., … Battastini, A. M. O. (2012). Overexpression of NTPDase2 in gliomas promotes systemic inflammation and pulmonary injury. Purinergic Signalling, 8(2), 235–243. https://doi.org/10.1007/s11302-011-9276-1
Doblas, S., He, T., Saunders, D., Pearson, J., Hoyle, J., Smith, N., … Towner, R. A. (2010). Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. Journal of magnetic resonance imaging: JMRI, 32(2), 267–275. https://doi.org/10.1002/jmri.22263
Gieryng, A., Pszczolkowska, D., Walentynowicz, K. A., Rajan, W. D., & Kaminska, B. (2017). Immune microenvironment of gliomas. Laboratory Investigation; A Journal of Technical Methods and Pathology, 97(5), 498–518. https://doi.org/10.1038/labinvest.2017.19
Pisati, F., Belicchi, M., Acerbi, F., Marchesi, C., Giussani, C., Gavina, M., … Torrente, Y. (2007). Effect of human skin-derived stem cells on vessel architecture, tumor growth, and tumor invasion in brain tumor animal models. Cancer Research, 67(7), 3054–3063. https://doi.org/10.1158/0008-5472.CAN-06-1384
Chekhonin, V. P., Baklaushev, V. P., Yusubalieva, G. M., Pavlov, K. A., Ukhova, O. V., & Gurina, O. I. (2007). Modeling and immunohistochemical analysis of C6 glioma in vivo. Bulletin of Experimental Biology and Medicine, 143(4), 501–509. https://doi.org/10.1007/s10517-007-0167-y
Wilhelmsson, U., Eliasson, C., Bjerkvig, R., & Pekny, M. (2003). Loss of GFAP expression in high-grade astrocytomas does not contribute to tumor development or progression. Oncogene, 22(22), 3407–3411. https://doi.org/10.1038/sj.onc.1206372
Le, D. M., Besson, A., Fogg, D. K., Choi, K.-S., Waisman, D. M., Goodyer, C. G., … Yong, V. W. (2003). Exploitation of astrocytes by glioma cells to facilitate invasiveness: A mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(10), 4034–4043.
Bak, X. Y., Lam, D. H., Yang, J., Ye, K., Wei, E. L. X., Lim, S. K., & Wang, S. (2011). Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Human Gene Therapy, 22(11), 1365–1377. https://doi.org/10.1089/hum.2010.212
Kucerova, L., Matuskova, M., Pastorakova, A., Tyciakova, S., Jakubikova, J., Bohovic, R., … Altaner, C. (2008). Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. The Journal of Gene Medicine, 10(10), 1071–1082. https://doi.org/10.1002/jgm.1239
Stoff-Khalili, M. A., Rivera, A. A., Mathis, J. M., Banerjee, N. S., Moon, A. S., Hess, A., … Curiel, D. T. (2007). Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Research and Treatment, 105(2), 157–167. https://doi.org/10.1007/s10549-006-9449-8
Guan, J., & Chen, J. (2013). Mesenchymal stem cells in the tumor microenvironment. Biomedical Reports, 1(4), 517–521. https://doi.org/10.3892/br.2013.103
Zhang, Y., Daquinag, A., Traktuev, D. O., Amaya-Manzanares, F., Simmons, P. J., March, K. L., … Kolonin, M. G. (2009). White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Research, 69(12), 5259–5266. https://doi.org/10.1158/0008-5472.CAN-08-3444
Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: New insights in signaling, development, and disease. The Journal of Cell Biology, 172(7), 973–981. https://doi.org/10.1083/jcb.200601018
Thiery, J. P., & Chopin, D. (1999). Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Reviews, 18(1), 31–42. https://doi.org/10.1023/a:1006256219004
Strauss, R., Hamerlik, P., Lieber, A., & Bartek, J. (2012). Regulation of stem cell plasticity: Mechanisms and relevance to tissue biology and cancer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(5), 887–897. https://doi.org/10.1038/mt.2012.2
Iser, I. C., Pereira, M. B., Lenz, G., & Wink, M. R. (2017). The epithelial-to-mesenchymal transition-like process in glioblastoma: An updated systematic review and in silico investigation. Medicinal Research Reviews, 37(2), 271–313. https://doi.org/10.1002/med.21408
Muehlberg, F. L., Song, Y.-H., Krohn, A., Pinilla, S. P., Droll, L. H., Leng, X., … Alt, E. U. (2009). Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis, 30(4), 589–597. https://doi.org/10.1093/carcin/bgp03
Ren, G., Liu, Y., Zhao, X., Zhang, J., Zheng, B., Yuan, Z.-R., … Shi, Y. (2014). Tumor resident mesenchymal stromal cells endow naïve stromal cells with tumor-promoting properties. Oncogene, 33(30), 4016–4020. https://doi.org/10.1038/onc.2013.387
Sai, B., Dai, Y., Fan, S., Wang, F., Wang, L., Li, Z., … Xiang, J. (2019). Cancer-educated mesenchymal stem cells promote the survival of cancer cells at primary and distant metastatic sites via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death & Disease, 10(12), 941. https://doi.org/10.1038/s41419-019-2149-1
Kim, E.-K., Kim, H.-J., Yang, Y.-I., Kim, J. T., Choi, M.-Y., Choi, C. S., … Cheong, S.-H. (2013). Endogenous gastric-resident mesenchymal stem cells contribute to formation of cancer stroma and progression of gastric cancer. Korean Journal of Pathology, 47(6), 507–518. https://doi.org/10.4132/KoreanJPathol.2013.47.6.507
Hossain, A., Gumin, J., Gao, F., Figueroa, J., Shinojima, N., Takezaki, T., … Lang, F. F. (2015). Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells (Dayton, Ohio), 33(8), 2400–2415. https://doi.org/10.1002/stem.2053
Fitzgerald, D. P., Palmieri, D., Hua, E., Hargrave, E., Herring, J. M., Qian, Y., … Steeg, P. S. (2008). Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clinical & Experimental Metastasis, 25(7), 799–810. https://doi.org/10.1007/s10585-008-9193-z
Liu, J., Zhang, Y., Bai, L., Cui, X., & Zhu, J. (2012). Rat bone marrow mesenchymal stem cells undergo malignant transformation via indirect co-cultured with tumour cells. Cell Biochemistry and Function, 30(8), 650–656. https://doi.org/10.1002/cbf.2844
Røsland, G. V., Svendsen, A., Torsvik, A., Sobala, E., McCormack, E., Immervoll, H., … Schichor, C. (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Research, 69(13), 5331–5339. https://doi.org/10.1158/0008-5472.CAN-08-4630
Pan, Q., Fouraschen, S. M. G., de Ruiter, P. E., Dinjens, W. N. M., Kwekkeboom, J., Tilanus, H. W., & van der Laan, L. J. W. (2014). Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Experimental Biology and Medicine (Maywood, N.J.), 239(1), 105–115. https://doi.org/10.1177/1535370213506802
Cheng, L., Huang, Z., Zhou, W., Wu, Q., Donnola, S., Liu, J. K., … Bao, S. (2013). Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell, 153(1), 139–152. https://doi.org/10.1016/j.cell.2013.02.021
Zhao, Y., Chen, J., Dai, X., Cai, H., Ji, X., Sheng, Y., … Dong, J. (2017). Human glioma stem-like cells induce malignant transformation of bone marrow mesenchymal stem cells by activating TERT expression. Oncotarget, 8(61), 104418–104429. https://doi.org/10.18632/oncotarget.22301
Tan, B., Shen, L., Yang, K., Huang, D., Li, X., Li, Y., … Zhu, J. (2018). C6 glioma-conditioned medium induces malignant transformation of mesenchymal stem cells: Possible role of S100B/RAGE pathway. Biochemical and Biophysical Research Communications, 495(1), 78–85. https://doi.org/10.1016/j.bbrc.2017.10.071
Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C., & Marini, F. C. (2016). Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research: BCR, 18(1), 84. https://doi.org/10.1186/s13058-016-0740-2
Ahn, S. Y. (2020). The role of MSCs in the tumor microenvironment and tumor progression. Anticancer Research, 40(6), 3039–3047. https://doi.org/10.21873/anticanres.14284
Vakkila, J., & Lotze, M. T. (2004). Inflammation and necrosis promote tumour growth. Nature Reviews. Immunology, 4(8), 641–648. https://doi.org/10.1038/nri1415
Rong, Y., Durden, D. L., Van Meir, E. G., & Brat, D. J. (2006). “Pseudopalisading” necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. Journal of Neuropathology and Experimental Neurology, 65(6), 529–539. https://doi.org/10.1097/00005072-200606000-00001
Yee, P. P., Wei, Y., Kim, S.-Y., Lu, T., Chih, S. Y., Lawson, C., … Li, W. (2020). Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nature Communications, 11(1), 5424. https://doi.org/10.1038/s41467-020-19193-y
Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. Journal of Immunology (Baltimore, Md.: 1950), 184(10), 5885–5894. https://doi.org/10.4049/jimmunol.0903143
Cheng, J., Li, L., Liu, Y., Wang, Z., Zhu, X., & Bai, X. (2012). Interleukin-1α induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Molecular Medicine Reports, 6(5), 955–960. https://doi.org/10.3892/mmr.2012.1019
Montesinos, J. J., Mora-García, M. de L., Mayani, H., Flores-Figueroa, E., García-Rocha, R., Fajardo-Orduña, G. R., … Monroy-García, A. (2013). In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells and Development, 22(18), 2508–2519. https://doi.org/10.1089/scd.2013.0084
Abumaree, M. H., Al Jumah, M. A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F. M., … Knawy, B. A. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports, 9(5), 620–641. https://doi.org/10.1007/s12015-013-9455-2
Shi, Y., Du, L., Lin, L., & Wang, Y. (2017). Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nature Reviews. Drug Discovery, 16(1), 35–52. https://doi.org/10.1038/nrd.2016.193
Brandenburg, S., Turkowski, K., Mueller, A., Radev, Y. T., Seidlitz, S., & Vajkoczy, P. (2017). Myeloid cells expressing high level of CD45 are associated with a distinct activated phenotype in glioma. Immunologic Research, 65(3), 757–768. https://doi.org/10.1007/s12026-017-8915-1
Acknowledgements
The authors would like to thank Giuliano Rizzotto Guimarães, Terezinha Stein and Rosalva Thereza Meurer (Laboratório de Pesquisa em Patologia, UFCSPA) for excellent technical assistance with histological analysis and M.Sc. Cristiano Rodrigues for his assistance in animal facility. The authors also gratefully acknowledge veterinarians Drs. Fernanda Bastos de Mello and Joana Fisch for animal assistance.
Funding
APSB is recipient of PNPD fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior); MRW, GL, EB and LLX are recipients of research fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico); ICI was recipient of PDJ and LRB was recipient of DTI-B fellowship from CNPq. This study was supported by CNPq, MS-SCTIE-Decit/CNPq nº 12/2018 (441575/2018-8) and MS-SCTIE-DECIT-DGITIS-CGCIS/CNPq nº 26/2020 (442586/2020–5); and by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul—Brasil (FAPERGS/CAPES 06/2018—Programa de Internacionalização da pós-graduação no RS (19/2551-0000679-9).
Author information
Authors and Affiliations
Contributions
ICI performed cell culture, in vivo experiments, and wrote the manuscript. LRB and JHA assisted with in vivo glioma model. APSB performed RT-qPCR assays. EB contributed with the glioma model and with the interpretation of the results; FLR assisted with animal perfusions; MCF assisted with histological analysis and the interpretation of data; RCSA analyzed the pathology of gliomas; LLX contributed with GFAP immunohistochemistry quantification; PAB assisted with the statistics and interpretation of the results; MRW got and coordinate the grants, supervised the experiments, assisted in drafting and critical reading. GL supervised the experiments and assisted with critical reading. All the authors discussed the results and contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest to declare.
Ethics Approval
The protocols used in this study were approved by the Ethics Committee on Animal Use (CEUA) of Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), under the number 104/11, following the resolutions of the CONCEA (Conselho Nacional de Controle de Experimentação Animal). The NIH ‘‘Guide for the Care and Use of Laboratory Animals’’ (NIH publication nº 80–23, revised 1996) was followed in all experiments. The surgeries were performed with all efforts to minimize the animals suffering.
Informed Consent
The authors are alone responsible for the content and writing of the paper. All authors reviewed and approved the final version of the manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.

Rights and permissions
About this article
Cite this article
Iser, I.C., Beckenkamp, L.R., Azambuja, J.H. et al. Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival. Stem Cell Rev and Rep 18, 1495–1509 (2022). https://doi.org/10.1007/s12015-021-10227-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12015-021-10227-6