Skip to main content
Log in

New Challenge: Mitochondrial Epigenetics?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Epigenetics can be explored at different levels and can be divided into two major areas: epigenetics of nuclear-encoded DNA and epigenetics of mitochondrial-encoded DNA. In epigenetics of nuclear-encoded DNA, the main roles are played by DNA methylation, changes in histone structure and several types of non-coding RNAs. Mitochondrial epigenetics seems to be similar in the aspect of DNA methylation and to some extent in the role of non-coding RNAs but differs significantly in changes in components coiling DNA. Nuclear DNA is coiled around histones, but mitochondrial DNA, together with associated proteins, is located in mitochondrial pseudocompartments called nucleoids. It has been shown that mitochondrial epigenetic mechanisms influence cell fate, transcription regulation, cell division, cell cycle, physiological homeostasis, bioenergetics and even pathologies, but not all of these mechanisms have been explored in stem cells. The main issue is that most of these mechanisms have only recently been discovered in mitochondria, while improvements in methodology, especially next-generation sequencing, have enabled in-depth studies. Because studies exploring mitochondria from other aspects show that mitochondria are crucial for the normal behavior of stem cells, it is suggested that precise mitochondrial epigenetics in stem cells should be studied more intensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eridani, S. (2014). Types of human stem cells and their therapeutic applications. Stem Cell Discovery, 4(2), 13–26.

    Article  CAS  Google Scholar 

  2. Dodson, B. P., & Levine, A. D. (2015). Challenges in the translation and commercialization of cell therapies. BMC Biotechnology, 15, 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Garitaonandia, I., Amir, H., Boscolo, F. S., et al. (2015). Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One, 10(2), e0118307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nguyen, H. T., Geens, M., & Spits, C. (2013). Genetic and epigenetic instability in human pluripotent stem cells. Human Reproduction Update, 19(2), 187–205.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, S., Bankier, A. T., Barrell, B. G., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–465.

    Article  CAS  PubMed  Google Scholar 

  6. Nicholls, T. J., & Minczuk, M. (2014). In D-loop: 40 years of mitochondrial 7S DNA. Experimental Gerontology, 56, 175–181.

    Article  CAS  PubMed  Google Scholar 

  7. Schon, E. A., DiMauro, S., & Hirano, M. (2012). Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Reviews Genetics, 13(12), 878–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MITOMAP. A human mitochondrial genome database. Available at http://www.mitomap.org/MITOMAP.

  9. Zeviani, M., & Di Donato, S. (2004). Mitochondrial disorders. Brain, 127(Pt 10), 2153–2172.

    Article  PubMed  Google Scholar 

  10. Spelbrink, J. N., Toivonen, J. M., Hakkaart, G. A., et al. (2000). In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. The Journal of Biological Chemistry, 275(32), 24818–24828.

    Article  CAS  PubMed  Google Scholar 

  11. Luoma, P., Melberg, A., Rinne, J. O., et al. (2004). Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet, 364(9437), 875–882.

    Article  CAS  PubMed  Google Scholar 

  12. Mancuso, M., Filosto, M., Bellan, M., et al. (2004). POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness. Neurology, 62(2), 316–318.

    Article  CAS  PubMed  Google Scholar 

  13. St John, J. C., Ramalho-Santos, J., Gray, H. L., et al. (2005). The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning and Stem Cells, 7(3), 141–153.

    Article  CAS  PubMed  Google Scholar 

  14. Facucho-Oliveira, J. M., & St John, J. C. (2009). The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Reviews, 5(2), 140–158.

    Article  CAS  PubMed  Google Scholar 

  15. Simsek, T., Kocabas, F., Zheng, J., et al. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7(3), 380–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nuschke, A., Rodrigues, M., Wells, A. W., Sylakowski, K., & Wells, A. (2016). Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Research & Therapy, 7(1), 179.

    Article  Google Scholar 

  17. Folmes, C. D., Nelson, T. J., Martinez-Fernandez, A., et al. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 64–271.

    Article  CAS  Google Scholar 

  18. Zhang, J., Khvorostov, I., Hong, J. S., et al. (2011). UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. The EMBO Journal, 30(24), 4860–4873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khacho, M., Clark, A., Svoboda, D. S., et al. (2016). Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell, 19(2), 232–247.

    Article  CAS  PubMed  Google Scholar 

  20. Detmer, S. A., & Chan, D. C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology, 8(11), 870–879.

    Article  CAS  PubMed  Google Scholar 

  21. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  22. Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells and Development, 24(10), 1150–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fandel, T. M., Albersen, M., Lin, G., et al. (2012). Recruitment of intracavernously injected adipose-derived stem cells to the major pelvic ganglion improves erectile function in a rat model of cavernous nerve injury. European Urology, 61(1), 201–210.

    Article  PubMed  Google Scholar 

  24. Bivalacqua, T. J., Deng, W., Kendirci, M., et al. (2007). Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. American Journal of Physiology Heart and Circulatory Physiology, 292(3), H1278–H1290.

    Article  CAS  PubMed  Google Scholar 

  25. Rodrigues, M., Turner, O., Stolz, D., Griffith, L. G., & Wells, A. (2012). Production of reactive oxygen species by multipotent stromal cells/mesenchymal stem cells upon exposure to fas ligand. Cell Transplantation, 21(10), 2171–2187.

    Article  PubMed  Google Scholar 

  26. Liu, G. Y., Jiang, X. X., Zhu, X., et al. (2015). ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 36(12), 1473–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, J., Qian, J., Xie, X., et al. (2012). High density lipoprotein protects mesenchymal stem cells from oxidative stress-induced apoptosis via activation of the PI3K/Akt pathway and suppression of reactive oxygen species. International Journal of Molecular Sciences, 13(12), 17104–17120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, S., Bian, H., Liu, Z., et al. (2012). Chlorogenic acid protects MSCs against oxidative stress by altering FOXO family genes and activating intrinsic pathway. European Journal of Pharmacology, 674(2–3), 65–72.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, G. S., Chan, E. C., Higuchi, M., Dusting, G. J., & Jiang, F. (2012). Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells, 1(4), 976–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao, J. S., Aly, Z. A., Lai, C. F., et al. (2007). Vascular Bmp Msx2 Wnt signaling and oxidative stress in arterial calcification. Annals of the New York Academy of Sciences, 1117, 40–50.

    Article  CAS  PubMed  Google Scholar 

  31. Mateos, J., De la Fuente, A., Lesende-Rodriguez, I., Fernández-Pernas, P., Arufe, M. C., & Blanco, F. J. (2013). Lamin A deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. Stem Cell Research, 11(3), 1137–1148.

    Article  CAS  PubMed  Google Scholar 

  32. Boopathy, A. V., Pendergrass, K. D., Che, P. L., Yoon, Y. S., & Davis, M. E. (2013). Oxidative stress-induced Notch1 signaling promotes cardiogenic gene expression in mesenchymal stem cells. Stem Cell Research & Therapy, 4(2), 43.

    Article  CAS  Google Scholar 

  33. Higuchi, M., Dusting, G. J., Peshavariya, H., et al. (2013). Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells and Development, 22(6), 878–888.

    Article  CAS  PubMed  Google Scholar 

  34. Drehmer, D. L., de Aguiar, A. M., Brandt, A. P., et al. (2016). Metabolic switches during the first steps of adipogenic stem cells differentiation. Stem Cell Research, 17(2), 413–421.

    Article  CAS  PubMed  Google Scholar 

  35. Maekawa, M., Taniguchi, T., Higashi, H., Sugimura, H., Sugano, K., & Kanno, T. (2004). Methylation of mitochondrial DNA is not a useful marker for cancer detection. Clinical Chemistry, 50(8), 1480–1481.

    Article  CAS  PubMed  Google Scholar 

  36. Kafri, T., Ariel, M., Brandeis, M., et al. (1992). Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes and Development, 6(5), 705–714.

    Article  CAS  PubMed  Google Scholar 

  37. Straussman, R., Nejman, D., Roberts, D., et al. (2009). Developmental programming of CpG island methylation profiles in the human genome. Nature Structural & Molecular Biology, 16(5), 564–571.

    Article  CAS  Google Scholar 

  38. Dawid, I. B. (1974). 5-Methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science, 184(4132), 80–81.

    Article  CAS  PubMed  Google Scholar 

  39. Nass, M. M. (1973). Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation. Journal of Molecular Biology, 80(1), 155–175.

    Article  CAS  PubMed  Google Scholar 

  40. Hong, E. E., Okitsu, C. Y., Smith, A. D., & Hsieh, C. L. (2013). Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Molecular and Cellular Biology, 33(14), 2683–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pollack, Y., Kasir, J., Shemer, R., Metzger, S., & Szyf, M. (1984). Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Research, 12(12), 4811–4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, B., Du, Q., Chen, L., et al. (2016). CpG methylation patterns of human mitochondrial DNA. Scientific Reports, 6, 23421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G., & Taylor, S. M. (2011). DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3630–3635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chestnut, B. A., Chang, Q., Price, A., Lesuisse, C., Wong, M,, & Martin, L. J. (2011). Epigenetic regulation of motor neuron cell death through DNA methylation. The Journal of Neuroscience, 31(46), 16619–16636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kohli, R. M., & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472), 472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tahiliani, M., Koh, K. P., Shen, Y., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929), 930–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liutkeviciute, Z., Lukinavicius, G., Masevicius, V., Daujotyte, D., & Klimasauskas, S. (2009). Cytosine-5-methyltransferases add aldehydes to DNA. Nature Chemical Biology, 5(6), 400–402.

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh, S., Sengupta, S., & Scaria, V. (2016). Hydroxymethyl cytosine marks in the human mitochondrial genome are dynamic in nature. Mitochondrion, 27, 25–31.

    Article  CAS  PubMed  Google Scholar 

  49. Bellizzi, D., D’Aquila, P., Scafone, T., et al. (2013). The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Research, 20(6), 537–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, D., Du, Z., Pian, L., et al. (2017). Mitochondrial DNA hypomethylation is a biomarker associated with induced senescence in human fetal heart mesenchymal stem cells. Stem Cells International, 2017, 1764549.

    PubMed  PubMed Central  Google Scholar 

  51. Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zaim, M., Karaman, S., Cetin, G., & Isik, S. (2012). Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Annals of Hematology, 91(8), 1175–1186.

    Article  PubMed  Google Scholar 

  53. Kasper, G., Mao, L., Geissler, S., et al. (2009). Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells, 27(6), 1288–1297.

    Article  CAS  PubMed  Google Scholar 

  54. Bentivegna, A., Roversi, G., Riva, G., et al. (2016). The effect of culture on human bone marrow mesenchymal stem cells: focus on DNA methylation profiles. Stem Cells International, 2016, 5656701.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Laurent, L., Wong, E., Li, G., et al. (2010). Dynamic changes in the human methylome during differentiation. Genome Research, 20(3), 320–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sørensen, A. L., Jacobsen, B. M., Reiner, A. H., Andersen, I. S., & Collas, P. (2010). Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage. Molecular Biology of the Cell, 21(12), 2066–2077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sørensen, A. L., Timoskainen, S., West, F. D., et al. (2010). Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells and Development, 19(8), 1257–1266.

    Article  PubMed  CAS  Google Scholar 

  58. Franzen, J., Zirkel, A., Blake, J., et al. (2017). Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell, 16(1), 183–191.

    Article  CAS  PubMed  Google Scholar 

  59. Kukat, C., Wurm, C. A., Spåhr, H., Falkenberg, M., Larsson, N. G., & Jakobs, S. (2011). Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13534–13539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kolesnikov, A. A. (2016). The mitochondrial genome. The nucleoid. Biochemistry (Mosc), 81(10), 1057–1065.

    Article  CAS  Google Scholar 

  61. Kaufman, B. A., Durisic, N., Mativetsky, J. M., et al. (2007). The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Molecular Biology of the Cell, 18(9), 3225–3236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ekstrand, M. I., Falkenberg, M., Rantanen, A., et al. (2004). Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Human Molecular Genetics, 13(9), 935–944.

    Article  CAS  PubMed  Google Scholar 

  63. Campbell, C. T., Kolesar, J. E., & Kaufman, B. A. (2012). Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochimica et Biophysica Acta, 1819(9–10), 921–929.

    Article  CAS  PubMed  Google Scholar 

  64. Audano, M., Ferrari, A., Fiorino, E., et al. (2014). Energizing genetics and Epi-genetics: role in the regulation of mitochondrial function. Current Genomics, 15(6), 436–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu, B., Lee, J., Nie, X., et al. (2013). Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Molecular Cell, 49(1), 121–132.

    Article  CAS  PubMed  Google Scholar 

  66. Spikings, E. C., Alderson, J., & St John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biology of Reproduction, 76(2), 327–335.

    Article  CAS  PubMed  Google Scholar 

  67. Cho, Y. M., Kwon, S., Pak, Y. K., et al. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications, 348(4), 1472–1478.

    Article  CAS  PubMed  Google Scholar 

  68. Prigione, A., Fauler, B., Lurz, R., Lehrach, H., & Adjaye, J. (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells, 28(4), 721–733.

    Article  CAS  PubMed  Google Scholar 

  69. Prigione, A., & Adjaye, J. (2010). Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells. The International Journal of Developmental Biology, 54(11–12), 1729–1741.

    Article  PubMed  Google Scholar 

  70. Armstrong, L., Tilgner, K., Saretzki, G., et al. (2010). Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells, 28(4), 661–673.

    Article  CAS  PubMed  Google Scholar 

  71. Chen, C. T., Shih, Y. R., Kuo, T. K., Lee, O. K., & Wei, Y. H. (2008). Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells, 26(4), 960–968.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Y., Marsboom, G., Toth, P. T., & Rehman, J. (2013). Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS One, 8(10), e77077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., & St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. Journal of Cell Science, 120, 4025–4034.

    Article  CAS  PubMed  Google Scholar 

  74. Masotti, A., Celluzzi, A., Petrini, S., Bertini, E., Zanni, G., & Compagnucci, C. (2014). Aged iPSCs display an uncommon mitochondrial appearance and fail to undergo in vitro neurogenesis. Aging (Albany NY), 6(12), 1094–1108.

    Article  Google Scholar 

  75. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648), 251–260.

    Article  CAS  PubMed  Google Scholar 

  76. Kanherkar, R. R., Bhatia-Dey, N., & Csoka, A. B. (2014). Epigenetics across the human lifespan. Frontiers in Cell and Development Biology, 2, 49.

    Google Scholar 

  77. Hawkins, R. D., Hon, G. C., Lee, L. K., et al. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6(5), 479–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pan, G., Tian, S., Nie, J., et al. (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 1(3), 299–312.

    Article  CAS  PubMed  Google Scholar 

  79. Bernstein, B. E., Mikkelsen, T. S., Xie, X., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2), 315–326.

    Article  CAS  PubMed  Google Scholar 

  80. Noer, A., Lindeman, L. C., & Collas, P. (2009). Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells and Development, 18(5), 725–736.

    Article  CAS  PubMed  Google Scholar 

  81. Matsui, M., & Corey, D. R. (2017). Non-coding RNAs as drug targets. Nature Reviews Drug Discovery, 16(3), 167–179.

    Article  CAS  PubMed  Google Scholar 

  82. Bergmann, J. H., & Spector, D. L. (2014). Long non-coding RNAs: modulators of nuclear structure and function. Current Opinion in Cell Biology, 26, 10–18.

    Article  CAS  PubMed  Google Scholar 

  83. Chuang, J. C., & Jones, P. A. (2007). Epigenetics and microRNAs. Pediatric Research, 61(5 Pt 2), 24R-29R.

    PubMed  Google Scholar 

  84. Sato, F., Tsuchiya, S., Meltzer, S. J., & Shimizu, K. (2011). MicroRNAs and epigenetics. The FEBS Journal, 278(10), 1598–1609.

    Article  CAS  PubMed  Google Scholar 

  85. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 14(7), 447–459.

    Article  CAS  PubMed  Google Scholar 

  87. Ha, H., Song, J., Wang, S., et al. (2014). A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genomics, 15, 545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Le Thomas, A., Tóth, K. F., & Aravin, A. A. (2014). To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biology, 15(1), 204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Girard, A., Sachidanandam, R., Hannon, G. J., & Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 442(7099), 199–202.

    PubMed  Google Scholar 

  90. Lukic, S., & Chen, K. (2011). Human piRNAs are under selection in Africans and repress transposable elements. Molecular Biology and Evolution, 28(11), 3061–3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hezroni, H., Koppstein, D., Schwartz, M. G., Avrutin, A., Bartel, D. P., & Ulitsky, I. (2015). Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Reports, 11(7), 1110–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perry, R. B., & Ulitsky, I. (2016). The functions of long noncoding RNAs in development and stem cells. Development, 143(21), 3882–3894.

    Article  PubMed  CAS  Google Scholar 

  93. Rackham, O., Shearwood, A. M., Mercer, T. R., Davies, S. M., Mattick, J. S., & Filipovska, A. (2011). Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA, 17(12), 2085–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Burzio, V. A., Villota, C., Villegas, J., et al. (2009). Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9430–9434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Noh, J. H., Kim, K. M., Abdelmohsen, K., et al. (2016). HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes and Development, 30(10), 1224–1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y., Pang, W. J., Wei, N., et al. (2014). Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene, 539(1), 117–124.

    Article  CAS  PubMed  Google Scholar 

  97. Leucci, E., Vendramin, R., Spinazzi, M., et al. (2016). Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 531(7595), 518–522.

    Article  CAS  PubMed  Google Scholar 

  98. Mourtada-Maarabouni, M., Hasan, A. M., Farzaneh, F., & Williams, G. T. (2010). Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Molecular Pharmacology, 78(1), 19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang, F., Zhang, H., Mei, Y., & Wu, M. (2014). Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Molecular Cell, 53(1), 88–100.

    Article  CAS  PubMed  Google Scholar 

  100. Guttman, M., Donaghey, J., Carey, B. W., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364), 295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsai, M. C., Manor, O., Wan, Y., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992), 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kalwa, M., Hänzelmann, S., Otto, S., et al. (2016). The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Research, 44(22), 10631–10643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bao, X., Wu, H., Zhu, X., et al. (2015). The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Research, 25(1), 80–92.

    Article  CAS  PubMed  Google Scholar 

  104. Ramos, A. D., Andersen, R. E., Liu, S. J., et al. (2015). The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell, 16(4), 439–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Luo, M., Jeong, M., Sun, D., et al. (2015). Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell, 16(4), 426–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Geiger, J., & Dalgaard, L. T. (2017). Interplay of mitochondrial metabolism and microRNAs. Cellular and Molecular Life Sciences, 74(4), 631–646.

    Article  CAS  PubMed  Google Scholar 

  107. Ro, S., Ma, H. Y., Park, C., et al. (2013). The mitochondrial genome encodes abundant small noncoding RNAs. Cell Research, 23(6), 759–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jagannathan, R., Thapa, D., Nichols, C. E., et al. (2015). Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart. Circulation Cardiovascular Genetics, 8(6), 785–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vidaurre, S., Fitzpatrick, C., Burzio, V. A., et al. (2014). Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. The Journal of Biological Chemistry, 289(39), 27182–27198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, W. X., Visavadiya, N. P., Pandya, J. D., Nelson, P. T., Sullivan, P. G., & Springer, J. E. (2015). Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Experimental Neurology, 265, 84–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mercer, T. R., Neph, S., Dinger, M. E., et al. (2011). The human mitochondrial transcriptome. Cell, 146(4), 645–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sripada, L., Tomar, D., Prajapati, P., Singh, R., Singh, A. K., & Singh, R. (2012). Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One, 7(9), e44873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bian, Z., Li, L. M., Tang, R., et al. (2010). Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Research, 20(9), 1076–1078.

    Article  PubMed  Google Scholar 

  114. Kren, B. T., Wong, P. Y., Sarver, A., Zhang, X., Zeng, Y., & Steer, C. J. (2009). MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biology, 6(1), 65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Barrey, E., Saint-Auret, G., Bonnamy, B., Damas, D., Boyer, O., & Gidrol, X. (2011). Pre-microRNA and mature microRNA in human mitochondria. PLoS One, 6(5), e20220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Watanabe, T., Chuma, S., Yamamoto, Y., et al. (2011). MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Developmental Cell, 20(3), 364–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang, H., Gao, Q., Peng, X., et al. (2011). piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Developmental Cell, 20(3), 376–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shiromoto, Y., Kuramochi-Miyagawa, S., Daiba, A., et al. (2013). GPAT2, a mitochondrial outer membrane protein, in piRNA biogenesis in germline stem cells. RNA, 19(6), 803–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ng, K. W., Anderson, C., Marshall, E. A., et al. (2016). Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Molecular Cancer, 15, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Suzuki, R., Honda, S., & Kirino, Y. (2012). PIWI expression and function in cancer. Frontiers Genetics, 3, 204.

    Article  CAS  Google Scholar 

  121. Siddiqi, S., & Matushansky, I. (2012). Piwis and piwi-interacting RNAs in the epigenetics of cancer. Journal of Cellular Biochemistry, 113(2), 373–380.

    Article  CAS  PubMed  Google Scholar 

  122. Kwon, C., Tak, H., Rho, M., et al. (2014). Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochemical and Biophysical Research Communications, 446(1), 218–223.

    Article  CAS  PubMed  Google Scholar 

  123. Shang, J., Yao, Y., Fan, X., et al. (2016). miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochimica et Biophysica Acta, 1863(4), 520–532.

  124. Park, H., Park, H., Pak, H. J., et al. (2015). miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction. Differentiation, 90(4–5), 91–100.

    Article  CAS  PubMed  Google Scholar 

  125. Clark, E. A., Kalomoiris, S., Nolta, J. A., & Fierro, F. A. (2014). Concise review: microRNA function in multipotent mesenchymal stromal cells. Stem Cells, 32(5), 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  126. Mathieu, J., & Ruohola-Baker, H. (2013). Regulation of stem cell populations by microRNAs. Advances in Experimental Medicine and Biology, 786, 329–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma, Y., Lin, H., & Qiu, C. (2012). High-efficiency transfection and siRNA-mediated gene knockdown in human pluripotent stem cells. Current Protocols in Stem Cell Biology, Chap. 2:Unit 5C.2.

  128. Renz, P. F., & Beyer, T. A. (2016). A Concise protocol for siRNA-mediated gene suppression in human embryonic stem cells. Methods in Molecular Biology, 134, 369–376.

    Google Scholar 

  129. Zoldan, J., Lytton-Jean, A. K., Karagiannis, E. D., et al. (2011). Directing human embryonic stem cell differentiation by non-viral delivery of siRNA in 3D culture. Biomaterials, 32(31), 7793–7800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, Z., Hu, Z., Zhang, D., et al. (2016). Silencing tumor necrosis factor-alpha in vitro from small interfering RNA-decorated titanium nanotube array can facilitate osteogenic differentiation of mesenchymal stem cells. International Journal of NanoMedicine, 11, 3205–3214.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, Y., Zhou, B., Xu, F., et al. (2016). Functional quantum dot-siRNA nanoplexes to regulate chondrogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 46, 165–176.

    Article  CAS  PubMed  Google Scholar 

  132. Teoh, H. K., Chong, P. P., Abdullah, M., et al. (2016). Small interfering RNA silencing of interleukin-6 in mesenchymal stromal cells inhibits multiple myeloma cell growth. Leukemia Research, 40, 44–53.

    Article  CAS  PubMed  Google Scholar 

  133. Bamezai, S., Rawat, V. P., & Buske, C. (2012). Concise review: the Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells, 30(12), 2603–2611.

    Article  CAS  PubMed  Google Scholar 

  134. Peng, J. C., & Lin, H. (2013). Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism. Current Opinion in Cell Biology, 25(2), 190–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. De Luca, L., Trino, S., Laurenzana, I., et al. (2016). MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget, 7(6), 6676–6692.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stimpfel.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stimpfel, M., Jancar, N. & Virant-Klun, I. New Challenge: Mitochondrial Epigenetics?. Stem Cell Rev and Rep 14, 13–26 (2018). https://doi.org/10.1007/s12015-017-9771-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9771-z

Keywords

Navigation