Skip to main content
Log in

Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as “consensus DEs” including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of “consensus DEs” according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  3. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  4. Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu, B. Y., Weick, J. P., Yu, J., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4335–4340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, J. B., Zaehres, H., Wu, G., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204), 646–650.

    Article  CAS  PubMed  Google Scholar 

  8. Hanna, J., Markoulaki, S., Schorderet, P., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133(2), 250–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chin, M. H., Mason, M. J., Xie, W., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma, A., & Wu, J. C. (2013). MicroRNA expression profiling of human-induced pluripotent and embryonic stem cells. Methods in Molecular Biology, 936, 247–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pick, M., Stelzer, Y., Bar-Nur, O., Mayshar, Y., Eden, A., & Benvenisty, N. (2009). Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells, 27(11), 2686–2690.

    Article  CAS  PubMed  Google Scholar 

  12. Deng, J., Shoemaker, R., Xie, B., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 27(4), 353–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brambrink, T., Hochedlinger, K., Bell, G., & Jaenisch, R. (2006). ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 933–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wakayama, S., Jakt, M. L., Suzuki, M., et al. (2006). Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells, 24(9), 2023–2033.

    Article  CAS  PubMed  Google Scholar 

  15. Gurdon, J. B., & Melton, D. A. (2008). Nuclear reprogramming in cells. Science, 322(5909), 1811–1815.

    Article  CAS  PubMed  Google Scholar 

  16. Hong, F., & Breitling, R. (2008). A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics, 24(3), 374–382.

    Article  CAS  PubMed  Google Scholar 

  17. Assou, S., Le Carrour, T., Tondeur, S., et al. (2007). A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells, 25(4), 961–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y., Cheng, D., Li, Z., Gao, X., & Wang, H. (2012). The gene expression profiles of induced pluripotent stem cells (iPSCs) generated by a non-integrating method are more similar to embryonic stem cells than those of iPSCs generated by an integrating method. Genetics and Molecular Biology, 35(3), 693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan, L., Wang, Z., Shen, J., et al. (2014). Comparison of reprogramming genes in induced pluripotent stem cells and nuclear transfer cloned embryos. Stem Cell Reviews, 10(4), 548–560.

    Article  CAS  PubMed  Google Scholar 

  20. Mayshar, Y., Ben-David, U., Lavon, N., et al. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7(4), 521–531.

    Article  CAS  PubMed  Google Scholar 

  21. Chin, M. H., Pellegrini, M., Plath, K., & Lowry, W. E. (2010). Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell, 7(2), 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newman, A. M., & Cooper, J. B. (2010). Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell, 7(2), 258–262.

    Article  CAS  PubMed  Google Scholar 

  23. Guenther, M. G., Frampton, G. M., Soldner, F., et al. (2010). Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell, 7(2), 249–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Irizarry, R. A., Hobbs, B., Collin, F., et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249–264.

    Article  PubMed  Google Scholar 

  25. Lockstone, H. E. (2011). Exon array data analysis using Affymetrix power tools and R statistical software. Briefings in Bioinformatics, 12(6), 634–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diboun, I., Wernisch, L., Orengo, C. A., & Koltzenburg, M. (2006). Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics, 7, 252.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Breitling, R., Armengaud, P., Amtmann, A., & Herzyk, P. (2004). Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Letters, 573(1–3), 83–92.

    Article  CAS  PubMed  Google Scholar 

  28. Hong, F., Breitling, R., McEntee, C. W., Wittner, B. S., Nemhauser, J. L., & Chory, J. (2006). RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics, 22(22), 2825–2827.

    Article  CAS  PubMed  Google Scholar 

  29. Falcon, S., & Gentleman, R. (2007). Using GOstats to test gene lists for GO term association. Bioinformatics, 23(2), 257–258.

    Article  CAS  PubMed  Google Scholar 

  30. Breuer, K., Foroushani, A. K., Laird, M. R., et al. (2013). InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Research, 41(Database issue), D1228–D1233.

    Article  CAS  PubMed  Google Scholar 

  31. Orchard, S., Kerrien, S., Abbani, S., et al. (2012). Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nature Methods, 9(4), 345–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Licata, L., Briganti, L., Peluso, D., et al. (2012). MINT, the molecular interaction database: 2012 update. Nucleic Acids Research, 40(Database issue), D857–D861.

    Article  CAS  PubMed  Google Scholar 

  33. Orchard, S., Ammari, M., Aranda, B., et al. (2014). The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 42(Database issue), D358–D363.

    Article  CAS  PubMed  Google Scholar 

  34. Chatr-Aryamontri, A., Breitkreutz, B. J., Heinicke, S., et al. (2013). The BioGRID interaction database: 2013 update. Nucleic Acids Research, 41(Database issue), D816–D823.

    Article  CAS  PubMed  Google Scholar 

  35. Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., & Eisenberg, D. (2004). The Database of Interacting Proteins: 2004 update. Nucleic Acids Research, 32(Database issue), D449–D451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shan, Z. Y., Wu, Y. S., Li, X., et al. (2014). Continuous passages accelerate the reprogramming of mouse induced pluripotent stem cells. Cellular Reprogramming, 16(1), 77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng, Z., Jia, J. L., Bou, G., et al. (2012). rRNA genes are not fully activated in mouse somatic cell nuclear transfer embryos. The Journal of Biological Chemistry, 287(24), 19949–19960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jimenez, R., Melo, E. O., Davydenko, O., et al. (2015). Maternal SIN3A regulates reprogramming of gene expression during mouse preimplantation development. Biology of Reproduction, 93(4), 89.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ang, Y. S., Tsai, S. Y., Lee, D. F., et al. (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell, 145(2), 183–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rao, R. A., Dhele, N., Cheemadan, S., et al. (2015). Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Scientific Reports, 5, 8229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(J1210069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiezhu An.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Fang Gao and Jingyu Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Flow chart of dataset selection. (PSD 111 kb)

Supplementary Table 1

Microarray studies in cell reprogramming used for meta-analysis. (DOCX 25 kb)

Supplementary Table 2

The DEs list identified between stem cells and donor cells from meta-analysis. (XLSX 122 kb)

Supplementary Table 3

The DEs list identified between miPSCs and mESCs from meta-analysis. (XLSX 47 kb)

Supplementary Table 4

mESC-specific genes and miPSC-specific genes. (XLSX 15 kb)

Supplementary Table 5

The up-regulated genes in MII oocytes compared to MEFs. (XLSX 418 kb)

Supplementary Table 6

The primer sequences used for qPCR analysis of the hub genes. (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Li, J., Zhang, H. et al. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells. Stem Cell Rev and Rep 13, 532–541 (2017). https://doi.org/10.1007/s12015-016-9704-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9704-2

Keywords

Navigation