Skip to main content

Advertisement

Log in

Cryopreservation Effects on Wharton’s Jelly Stem Cells Proteome

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cryopreservation is the only method for long-term storage of viable cells and tissues used for cellular therapy, stem cell transplantation and/or tissue engineering. However, the freeze-thaw process strongly contributes to cell and tissue damage through several mechanisms, including oxidative stress, cell injury from intracellular ice formation and altered physical cellular properties. Our previous proteomics investigation was carried out on Wharton’s Jelly Stem Cells (WJSCs) having similar properties to adult mesenchymal stem cells and thus representing a rich source of primitive cells to be potentially used in regenerative medicine. The aim of the present work was to investigate molecular changes that occur in WJSCs proteome in different experimental conditions: fresh primary cell culture and frozen cell. To analyze changes in protein expression of WJSCs undergoing different culturing procedures, we performed a comparative proteomic analysis (2DE followed by MALDI-TOF MS/MS nanoESI-Q-TOF MS coupled with nanoLC) between WJSCs from fresh and frozen cell culturing, respectively. Frozen WJSCs showed qualitative and quantitative changes compared to cells from fresh preparation, expressing proteins involved in replication, cellular defence mechanism and metabolism, that could ensure freeze-thaw survival. The results of this study could play a key role in elucidating possible mechanisms related to maintaining active proliferation and maximal cellular plasticity and thus making the use of WJSCs in cell therapy safe following bio-banking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holden, C. (2007). Stem cells. Versatile stem cells without the ethical baggage? Science, 315(5809), 170.

    Article  CAS  PubMed  Google Scholar 

  2. Jomura, S., Uy, M., Mitchell, K., Dallasen, R., Bode, C. J., & Xu, Y. (2007). Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells, 25(1), 98–106.

    Article  CAS  PubMed  Google Scholar 

  3. Gandia, C., Armiñan, A., Garcia-Verdugo, J. M., et al. (2008). Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells, 26(3), 638–645.

    Article  PubMed  Google Scholar 

  4. Volponi, A. A., Pang, Y., & Sharpe, P. T. (2010). Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology, 20(12), 715–722.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, D. W., Staples, M., Shinozuka, K., Pantcheva, P., Kang, S. D., & Borlongan, C. V. (2013). Wharton’s Jelly –derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. International Journal of Molecular Sciences, 14(6), 11692–11712.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sanberg, P. R., Park, D. H., & Borlongan, C. V. (2010). Stem cell transplants at childbirth. Stem Cell Reviews, 6(1), 27–30.

    Article  PubMed  Google Scholar 

  7. Carroll, J. E., & Borlongan, C. V. (2008). Adult stem cell therapy for acute brain injury in children. CNS & Neurological Disorders Drug Targets, 7(4), 361–369.

    Article  CAS  Google Scholar 

  8. Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features and potential for homing. Stem Cells, 25(11), 2739–2749.

    Article  CAS  PubMed  Google Scholar 

  9. Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21(1), 105–110.

    Article  PubMed  Google Scholar 

  10. Miao, Z., Jin, J., Chen, L., et al. (2006). Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biology International, 30(9), 681–687.

    Article  CAS  PubMed  Google Scholar 

  11. Csaki, C., Matis, U., Mobasheri, A., Ye, H., & Shakibaei, M. (2007). Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and Ultrastructural study. Histochemistry and Cell Biology, 128(6), 507–520.

    Article  CAS  PubMed  Google Scholar 

  12. Kaneko, Y., Tajiri, N., Su, T. P., Wang, Y., & Borlongan, C. V. (2012). Combination treatment ofhypothermia and mesenchymal stromal cells amplifies neuroprotection in primaryrat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioidsystem. PLoS One, 7(10), e47583.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337.

    Article  PubMed  Google Scholar 

  14. Hsieh, J. Y., Fu, Y. S., Chang, S. J., Tsuang, Y. H., & Wang, H. W. (2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells and Development, 19(12), 1895–1910.

    Article  CAS  PubMed  Google Scholar 

  15. Angelucci, S., Marchisio, M., Di Giuseppe, F., et al. (2010). Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Science, 8, 18.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bongso, A., & Fong, C. Y. (2013). The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Reviews, 9(2), 226–240.

    Article  CAS  PubMed  Google Scholar 

  17. Gauthaman, K., Fong, C. Y., Cheyyatraivendran, S., Biswas, A., Choolani, M., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 113(6), 2027–2039.

    Article  CAS  PubMed  Google Scholar 

  18. Bakhshi, T., Zabriskie, R. C., Bodie, S., et al. (2008). Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion, 48(12), 2638–2644.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fong, C. Y., Gauthaman, K., Cheyyatraivendran, S., Lin, H. D., Biswas, A., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. Journal of Cellular Biochemistry, 113(2), 658–668.

    Article  CAS  PubMed  Google Scholar 

  20. Gauthaman, K., Fong, C. Y., Subramanian, A., Biswas, A., & Bongso, A. (2010). ROCK inhibitor Y-27632 increases thaw-survival rates and preserves stemness and differentiation potential of human Wharton's jelly stem cells after cryopreservation. Stem Cell Reviews, 6(4), 665–676.

    Article  CAS  PubMed  Google Scholar 

  21. Fong, C. Y., Subramanian, A., Biswas, A., et al. (2010). Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton's jelly stem cells. Reproductive Biomedicine Online, 21(3), 391–401.

    Article  PubMed  Google Scholar 

  22. de Lima Prata, K., de Santis, G. C., Orellana, M. D., Palma, P. V., Brassesco, M. S., & Covas, D. T. (2012). Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions. Cytotherapy, 14(6), 694–700.

    Article  PubMed  Google Scholar 

  23. Hunt, C. J. (2011). Cryopreservation of human stem cells for clinical application: a review. Transfusion Medicine and Hemotherapy, 38(2), 107–123.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gao, D., & Critserl, J. K. (2000). Mechanisms of cryoinjury in living cells. ILAR Journal, 41(4), 187–196.

    Article  CAS  PubMed  Google Scholar 

  25. Hansen, T. N., Dawson, P. E., & Brockbank, K. G. (1994). Effects of hypothermia upon endothelial cells: mechanisms and clinical importance. Criobiology, 31(1), 101–106.

    Article  CAS  Google Scholar 

  26. Buettner, G. R. (1993). The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535–543.

    Article  CAS  PubMed  Google Scholar 

  27. Baust, J. G., Gao, D., & Baust, J. M. (2009). Cryopreservation: an emerging paradigm change. Organogenesis, 5(3), 90–96.

    Article  PubMed Central  PubMed  Google Scholar 

  28. de Boer, F., Dräger, A. M., Pinedo, H. M., et al. (2002). Early apoptosis largely accounts for functional impairment of CD34+ cells in frozen-thawed stem cell grafts. Journal of Hematotherapy & Stem Cell Research, 11(6), 951–963.

    Article  Google Scholar 

  29. Heng, B. C., Ye, C. P., Liu, H., et al. (2006). Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. Journal of Biomedical Science, 13(3), 433–445.

    Article  CAS  PubMed  Google Scholar 

  30. Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Rufaihah, A. J., & Cao, T. (2006). Kinetics of cell death of frozen-thawed human embryonic stem cell colonies is reversibly slowed down by exposure to low temperature. Zygote, 14(4), 341–348.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, X., Cowley, S., Flaim, C. J., James, W., Seymour, L., & Cui, Z. (2010). The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol Progr, 26(3), 827–837.

    Article  CAS  Google Scholar 

  32. Olson, M. F. (2008). Applications for ROCK kinase inhibition. Current Opinion in Cell Biology, 20(2), 242–248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Liu, Y., Xu, X., Ma, X., Martin-Rendon, E., Watt, S., & Cui, Z. (2010). Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnology Progress, 26(6), 1635–1643.

    Article  CAS  PubMed  Google Scholar 

  34. Kashuba Benson, C. M., Benson, J. D., & Critser, J. K. (2008). An improved cryopreservation method for a mouse embryonic stem cell line. Cryobiology, 56(2), 120–130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Thirumala, S., Goebel, W. S., & Woods, E. J. (2009). Clinical grade adult stem cell banking. Organogenesis, 5(3), 143–154.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Xu, X., Liu, Y., Cui, Z., Wei, Y., & Zhang, L. (2012). Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. Journal of Biotechnology, 162(2–3), 224–231.

    Article  CAS  PubMed  Google Scholar 

  37. Lanuti, P., Fuhrmann, S., Lachmann, R., Marchisio, M., Miscia, S., & Kern, F. (2009). Simultaneous characterization of phospho-proteins and cell cycle in activated T cell subsets. International Journal of Immunopathology and Pharmacology, 22(3), 689–698.

    CAS  PubMed  Google Scholar 

  38. Perfetto, S. P., Ambrozak, D., Nguyen, R., Chattopadhyay, P., & Roederer, M. (2006). Quality assurance for polychromatic flow cytometry. Nature Protocols, 1(3), 1522–1530.

    Article  CAS  PubMed  Google Scholar 

  39. Miscia, S., Ciccocioppo, F., Lanuti, P., et al. (2009). Abeta(1–42) stimulated T cells express P-PKC-delta and P-PKC-zeta in Alzheimer disease. Neurobiology of Aging, 30(3), 394–406.

    Article  CAS  PubMed  Google Scholar 

  40. Erba, E., Bergamaschi, D., Bassano, L., et al. (2001). Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action. European Journal of Cancer, 37(1), 97–105.

    Article  CAS  PubMed  Google Scholar 

  41. Lanuti, P., Marchisio, M., Cantilena, S., et al. (2006). A Flow cytometry procedure for simultaneous characterization of cell DNA content and expression of intracellular protein kinase C-ζ. Journal of Immunological Methods, 315(1–2), 37–48.

    Article  CAS  PubMed  Google Scholar 

  42. Gatta, V., D'Aurora, M., Lanuti, P., et al. (2013). Gene expression modifications in Wharton's jelly mesenchymal stem cells promoted by prolonged in vitro culturing. BMC Genomics, 14, 635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mathieu, P. S., & Loboa, E. G. (2012). Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Engineering. Part B, Reviews, 18(6), 436–444.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bizzarro, V., Fontanella, B., Franceschelli, S., et al. (2010). Role of annexin A1 in mouse myoblast cell differentiation. Journal of Cellular Physiology, 224(3), 757–765.

    Article  CAS  PubMed  Google Scholar 

  45. Sihn, C. R., Suh, E. J., Lee, K. H., & Kim, S. H. (2005). Sec13 Induces genomic instability in U2OS cells. Experimental & Molecular Medicine, 37(3), 255–260.

    Article  CAS  Google Scholar 

  46. Blatch, G. L., & Lässle, M. (1999). The tetratricopeptide repeat: a structural motif mediating protein protein interactions. Bioassays, 21(11), 932–939.

    Article  CAS  Google Scholar 

  47. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.

    Article  CAS  PubMed  Google Scholar 

  48. Johansoson, H., Vizlin-Hodzic, D., Simonsson, T., & Simonsson, T. (2010). Transaltionally controlled tumor protein interacts with nucleophosmin during mitosis in ES cells. Cell Cycle, 9(11), 2160–2169.

    Article  Google Scholar 

  49. Nakamura, K., Zhang, X., Kuramitsu, Y., et al. (2006). Analysis on heat stress-induced Hyperphosphorylation of stathmin at serine 37 in Jurkat cells by means of two-dimensional gel electrophoresis and tandem mass spectrometry. Journal of Chromatography. A, 1106(1–2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  50. Krzysiek-Maczka, G., Michalik, M., Madeja, Z., Korohoda, W., Grunewald, T. G., & Butt, E. (2010). Involvement of cytoskeleton in orientation of cell division in contact guided cells. Folia Biol(Krakow), 58(1–2), 21–27.

    Google Scholar 

  51. Tomasetto, C., Moog-Lutz, C., Régnier, C. H., Schreiber, V., Basset, P., & Rio, M. C. (1995). Lasp-1 (MLN 50) defines a new LIM protein subfamily characterized by the association of LIM and SH3 domains. FEBS Letters, 373(3), 245–249.

    Article  CAS  PubMed  Google Scholar 

  52. Grunewald, T. G., & Butt, E. (2008). The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Molecular Cancer, 7, 31.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Chevallet, M., Wagner, E., Sylvie Luche, S., et al. (2003). Regeneration of peroxiredoxins during recovery after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress. Journal of Biological Chemistry, 278(29), 37146–37153.

    Article  CAS  PubMed  Google Scholar 

  54. Rabilloud, T., Heller, M., Gasnier, F., et al. (2002). Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. Journal of Biological Chemistry, 277(22), 19396–19401.

    Article  CAS  PubMed  Google Scholar 

  55. Fourquet, S., Huang, M. E., D'Autreaux, B., & Toledano, M. B. (2008). The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxidants and Redox Signaling, 10(9), 1565–1576.

    Article  CAS  PubMed  Google Scholar 

  56. Zemp, I., Wild, T., O'Donohue, M. F., et al. (2009). Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. Journal of Cell Biology, 185(7), 1167–1180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tzima, E., Reader, J. S., Irani-Tehrani, M., Ewalt, K. L., Schwartz, M. A., & Schimmel, P. (2003). Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 14903–14907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Shang, F., & Taylor, A. (2011). Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Rad Biol & Med, 51, 5–16.

    Article  CAS  Google Scholar 

  59. Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82(2), 373–428.

    CAS  PubMed  Google Scholar 

  60. Liu, A. X., Jin, F., Zhang, W. W., et al. (2006). Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biology of Reproduction, 75(3), 414–420.

    Article  CAS  PubMed  Google Scholar 

  61. Ni, M., Zhang, Y., & Lee, A. S. (2011). Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochemical Journal, 434(2), 181–188.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Castegna, A., Aksenov, M., Thongboonkerd, V., et al. (2002). Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. Journal of Neurochemistry, 82(6), 1524–1532.

    Article  CAS  PubMed  Google Scholar 

  63. Perluigi, M., Poon, H. F., Maragos, W., et al. (2005). Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Molecular and Cellular Proteomics, 4(12), 1849–1861.

    Article  CAS  PubMed  Google Scholar 

  64. Lim, S. O., Park, S. G., Yoo, J. H., et al. (2005). Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World Journal of Gastroenterology, 11(14), 2072–2079.

    CAS  PubMed  Google Scholar 

  65. Wettsteina, G., Bellayea, P. S., Micheaua, O., & Bonniauda, P. (2012). Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? International Journal of Biochemistry & Cell Biology, 44(10), 1680–1686.

    Article  Google Scholar 

  66. Tucholski, J., & Johnson, G. V. (2002). Tissue transglutaminase differentially modulates apoptosis in a stimuli-dependent manner. Journal of Neurochemistry, 81(4), 780–791.

    Article  CAS  PubMed  Google Scholar 

  67. Antonyak, M. A., Singh, U. S., Lee, D. A., et al. (2001). Effects of tissue transglutaminase on retinoic acid-induced cellular differentiation and protection against apoptosis. Journal of Biological Chemistry, 276(36), 33582–33587.

    Article  CAS  PubMed  Google Scholar 

  68. Maruko, A., Ohtake, Y., Katoh, S., & Ohkubo, Y. (2009). Transglutaminase down-regulates the dimerization of epidermal growth factor receptor in rat perivenous and periportal hepatocytes. Cell Proliferation, 42(5), 647–656.

    Article  CAS  PubMed  Google Scholar 

  69. Fésüs, L., & Piacentini, M. (2002). Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends in Biochemical Sciences, 27(10), 534–539.

    Article  PubMed  Google Scholar 

  70. Fésüs, L., & Szondy, Z. (2005). Transglutaminase 2 in the balance of cell death and survival. FEBS Letters, 579(15), 3297–3302.

    Article  PubMed  Google Scholar 

  71. Moll, R., Divo, M., & Langbein, L. (2008). The human keratins: biology and pathology. Histochemistry and Cell Biology, 129(6), 705–733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Owens, D. W., & Lane, E. B. (2003). The quest for the function of simple epithelial keratins. Bioessays, 25(8), 748–758.

    Article  CAS  PubMed  Google Scholar 

  73. Mackinder, M. A., Evans, C. A., Chowdry, J., Staton, C. A., & Corfe, B. M. (2012). Alteration in composition of keratin intermediate filaments in a model of breast cancer progression and the potential to reverse hallmarks of metastasis. Cancer Biomarkers, 12(2), 49–64.

    CAS  PubMed  Google Scholar 

  74. Foertsch, F., Teichmann, N., Kob, R., Hentschel, J., Laubscher, U., & Melle, C. (2013). S100A11 Is involved in the regulation of the stability of cell cycle regulator p21(CIP1/WAF1) in human keratinocyte HaCaT cells. FEBS Journal, 280(16), 3840–3853.

    Article  CAS  PubMed  Google Scholar 

  75. Bheda, A., Gullapalli, A., Caplow, M., Pagano, J. S., & Shackelford, J. (2010). Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis. Cell Cycle, 9(5), 980–994.

    Article  CAS  PubMed  Google Scholar 

  76. Rieser, E., Cordier, S. M., & Walczak, H. (2013). Linear ubiquitination: a newly discovered regulator of cell signalling. Trends in Biochemical Sciences, 38(2), 94–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by “Carichieti” foundation, Chieti, Italy and by Italian Ministry of Education, University and Research (MIUR): FIRB 2010 “accordi di programma”.

Authors would like to tank Mr Mario Scurti (G. d’Annunzio University Foundation Chieti, Italy) for his helpful technical assistance in graphical and informatic support.

Conflict of Interest Statement

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Angelucci.

Additional information

M. Marchisio and S. Angelucci as senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1. Supplemental Table 1

(DOCX 12 kb)

S2. Supplemental Figure 1

CD marker expression of unfrozen and frozen WJSCs. Flow cytometric analysis of WJSCs surface antigen expression profile: CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, CD117 CD133, CD144, CD146, CD166, ESA, HLA-ABC, HLA-DR, Sox-2, OCT3/4 and SSEA4. Red histograms represent cells stained with the expression markers; blue histograms show the respective IgG isotype control (background CTRL). These data are representative of three separate biological samples. (JPEG 1707 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giuseppe, F., Pierdomenico, L., Eleuterio, E. et al. Cryopreservation Effects on Wharton’s Jelly Stem Cells Proteome. Stem Cell Rev and Rep 10, 429–446 (2014). https://doi.org/10.1007/s12015-014-9501-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9501-8

Keywords

Navigation