Skip to main content
Log in

Cell Cycle Regulation During Neurogenesis in the Embryonic and Adult Brain

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Throughout the development of the central nervous system, neural crest cells and the primary neural stem cells originate several non-neuronal and neuronal cell types. Undifferentiated stem cells exist in the adult brain, mainly in the dentate gyrus of the hippocampus and in the subventricular zone of the lateral ventricles, and can produce new neurons, participating in brain plasticity and tissue regeneration. Neurogenesis in the embryonic and adult brain occurs under the control of intrinsic and extrinsic factors. However, the mechanisms, by which cell cycle components control neural stem cell proliferation and consequently neurogenesis, still lack further investigation. We discuss here recent knowledge obtained on cell cycle components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kreigstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, 132, 49–84.

    Google Scholar 

  2. Dupin, E., & Coelho-Aguiar, J. M. (2012). Isolation and differentiation properties of neural crest stem cells. Cytometry. Part A, 83, 38–47.

    Google Scholar 

  3. Oliveira, S. L., Pillat, M. M., Cheffer, A., Lameu, C., Schwindt, T. T., & Ulrich, H. (2013). Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry. Part A, 83, 76–89.

    Article  Google Scholar 

  4. Burnstock, G., & Ulrich, H. (2011). Purinergic signaling in embryonic and stem cell development. Cellular and Molecular Life Sciences, 68, 1369–1394.

    Article  PubMed  CAS  Google Scholar 

  5. Zuba-Surma, E. K., Kucia, M., & Ratajczak, M. Z. (2009). “Small stem cells” in adult tissues: very small embryonic-like stem cells stand up! Cytometry. Part A, 75, 4–13.

    Article  Google Scholar 

  6. Heider, A., Danova-Alt, R., Egger, D., Cross, M., & Alt, R. (2013). Murine and human very small embryonic-like cells: a perspective. Cytometry. Part A, 83, 72–75.

    Article  Google Scholar 

  7. Montiel-Eulefi, E., Nery, A. A., Rodrigues, L. C., Sánchez, R., Romero, F., & Ulrich, H. (2012). Neural differentiation of rat aorta pericyte cells. Cytometry. Part A, 81, 65–71.

    Article  Google Scholar 

  8. Nery, A. A., Nascimento, I. C., Glaser, T., Bassaneze, V., Krieger, J. E., & Ulrich, H. (2013). Human mesenchymal cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry. Part A, 83, 48–61.

    Article  Google Scholar 

  9. Fábián, A., Vereb, G., & Szöllösi, J. (2012). The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. Cytometry. Part A, 83, 62–71.

    Google Scholar 

  10. Vermeulen, K., Van Bockstaele, D. R., & Berneman, Z. N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proliferation, 36, 131–149.

    Article  PubMed  CAS  Google Scholar 

  11. Satyanarayana, A., & Kaldis, P. (2009). Mammalian cell-cycle regulation: several cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene, 28, 2925–2939.

    Article  PubMed  CAS  Google Scholar 

  12. Min, J., Wang, X., Tong, Y., Li, X., Tao, D., Hu, J., Xie, D., & Gong, J. (2012). Expression of cyclins in highdensity cultured cells and in vivo tumor cells. Cytometry. Part A, 81, 874–882.

    Article  Google Scholar 

  13. Geng, Y., Eaton, E. N., Picón, M., Roberts, J. M., Lundberg, A. S., Gifford, A., et al. (1996). Regulation of cyclin E transcription by E2fs and retinoblastoma protein. Oncogene, 12, 1173–1180.

    PubMed  CAS  Google Scholar 

  14. Le Breton, M., Cormier, P., Bellé, R., Mulner-Lorillon, O., & Morales, J. (2005). Translational control during mitosis. Biochimie, 87, 805–811.

    Article  PubMed  Google Scholar 

  15. Bashir, T., & Pagano, M. (2005). Cdk1: the dominant sibling of cdk2. Nature Cell Biology, 7, 779–781.

    Article  PubMed  CAS  Google Scholar 

  16. Pavletich, N. P. (1999). Mechanisms of cyclin-dependent kinase regulation: structures of cdks, their cyclin activators, and cip and lnk4 inhibitors. Journal of Molecular Biology, 287, 821–828.

    Article  PubMed  CAS  Google Scholar 

  17. Santamaría, D., Barrière, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, K., et al. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 448, 811–815.

    Article  PubMed  Google Scholar 

  18. Vandenbosch, R., Borgs, L., Beukelaers, P., Foidart, A., Nguyen, L., Moonen, G., et al. (2007). CDK2 is dispensable for adult hippocampal neurogenesis. Cell Cycle, 6, 3065–3069.

    Article  PubMed  CAS  Google Scholar 

  19. Lim, S., & Kaldis, P. (2012). Loss of cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells, 30, 1509–1520.

    Article  PubMed  CAS  Google Scholar 

  20. Ferguson, K. L., Callaghan, S. M., O’Hare, M. J., Park, D. S., & Slack, R. S. (2000). The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. Journal of Biological Chemistry, 275, 33593–33600.

    Article  PubMed  CAS  Google Scholar 

  21. Frederick, T. J., & Wood, T. L. (2004). IGF-I and FGF-2 coordinately enhance cyclin D1 and cyclin E-cdk2 association and activity to promote G1 progression in oligodendrocyte progenitor cells. Molecular and Cellular Neuroscience, 25, 480–492.

    Article  PubMed  CAS  Google Scholar 

  22. Caillava, C., Vandenbosch, R., Jablonska, B., Deboux, C., Spigoni, G., Gallo, V., et al. (2011). Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system. The Journal of Cell Biology, 193, 397–407.

    Article  PubMed  CAS  Google Scholar 

  23. Jablonska, B., Aguirre, A., Vandenbosch, R., Belachew, S., Berthet, C., Kaldis, P., et al. (2007). Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. The Journal of Cell Biology, 179, 1231–1245.

    Article  PubMed  CAS  Google Scholar 

  24. Calegari, F., & Huttner, W. B. (2003). An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. Journal of Cell Science, 116, 4947–4955.

    Article  PubMed  CAS  Google Scholar 

  25. Lange, C., Huttner, W. B., & Calegari, F. (2009). Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell, 5, 320–331.

    Article  PubMed  CAS  Google Scholar 

  26. Bryja, V., Pacherník, J., Vondrácek, J., Soucek, K., Cajánek, L., Horvath, V., et al. (2008). Lineage specific composition of cyclin D-CDK4/CDK6-p27 complexes reveals distinct functions of CDK4, CDK6 and individual D-type cyclins in differentiating cells of embryonic origin. Cell Proliferation, 41, 875–893.

    Article  PubMed  CAS  Google Scholar 

  27. Artegiani, B., Lindemann, D., & Calegari, F. (2011). Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. The Journal of Experimental Medicine, 208, 937–948.

    Article  PubMed  CAS  Google Scholar 

  28. Beukelaers, P., Vandenbosch, R., Caron, N., Nguyen, L., Belachew, S., Moonen, G., et al. (2011). Cdk6-dependent regulation of G(1) length controls adult neurogenesis. Stem Cells, 29, 713–724.

    Article  PubMed  CAS  Google Scholar 

  29. Jessberger, S., Gage, F. H., Eisch, A. J., & Lagace, D. C. (2009). Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends in Neuroscience, 32, 575–582.

    Article  CAS  Google Scholar 

  30. Zheng, M., Leung, C. L., & Liem, R. K. (1998). Region-specific expression of cyclin-dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. Journal of Neurobiology, 35, 141–159.

    Article  PubMed  CAS  Google Scholar 

  31. Ohshima, T., & Mikoshiba, K. (2002). Reelin signaling and Cdk5 in the control of neuronal positioning. Molecular Neurobiology, 26, 153–166.

    Article  PubMed  CAS  Google Scholar 

  32. Ohshima, T., Hirasawa, M., Tabata, H., Mutoh, T., Adachi, T., Suzuki, H., et al. (2007). Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development, 134, 2273–2282.

    Article  PubMed  CAS  Google Scholar 

  33. Hirota, Y., Ohshima, T., Kaneko, N., Ikeda, M., Iwasato, T., Kulkarni, A. B., et al. (2007). Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone. The Journal of Neuroscience, 27, 12829–12838.

    Article  PubMed  CAS  Google Scholar 

  34. Jessberger, S., Aigner, S., Clemenson, G. D., Jr., Toni, N., Lie, D. C., Karalay, O., et al. (2008). Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus. PLoS Biology, 6, e272.

    Article  PubMed  Google Scholar 

  35. Lagace, D. C., Benavides, D. R., Kansy, J. W., Mapelli, M., Greengard, P., Bibb, J. A., et al. (2008). Cdk5 is essential for adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 18567–18571.

    Article  PubMed  CAS  Google Scholar 

  36. Zheng, Y. L., Li, B. S., Rudrabhatla, P., Shukla, V., Amin, N. D., Maric, D., et al. (2010). Phosphorylation of p27Kip1 at Thr187 by cyclin-dependent kinase 5 modulates neural stem cell differentiation. Molecular Biology of the Cell, 21, 3601–3614.

    Article  PubMed  CAS  Google Scholar 

  37. Fu, W. Y., Cheng, K., Fu, A. K., & Ip, N. Y. (2011). Cyclin-dependent kinase 5-dependent phosphorylation of Pctaire1 regulates dendrite development. Neuroscience, 180, 353–359.

    Article  PubMed  CAS  Google Scholar 

  38. Fu, A. K., Hung, K. W., Wong, H. H., Fu, W. Y., Ip, N. Y. (2012). Cdk5 Phosphorylates a component of the HDAC complex and regulates histone acetylation during neuronal cell death. Neurosignals, [Epub ahead of print].

  39. Wang, W., Bu, B., Xie, M., Zhang, M., Yu, Z., & Tao, D. (2009). Neural cell cycle dysregulation and central nervous system diseases. Progress in Neurobiology, 89, 1–17.

    Article  PubMed  CAS  Google Scholar 

  40. Fischer, H. G., Morawski, M., Brückner, M. K., Mittag, A., Tarnok, A., & Arendt, T. (2012). Changes in neuronal DNA content variation in the human brain during aging. Aging Cell, 11, 628–633.

    Article  PubMed  CAS  Google Scholar 

  41. Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., & Arendt, T. (2007). Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. The Journal of Neuroscience, 27, 6859–6867.

    Article  PubMed  CAS  Google Scholar 

  42. Cheung, Z. H., Gong, K., Ip, N. Y. Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. The Journal of Neuroscience, 28, 4872–4877.

  43. Takahashi, S., Ohshima, T., Hirasawa, M., Pareek, T. K., Bugge, T. H., Morozov, A., et al. (2010). Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration. The American Journal of Pathology, 176, 320–329.

    Article  PubMed  CAS  Google Scholar 

  44. Glickstein, S. B., Alexander, S., & Ross, M. E. (2007). Differences in cyclin D2 and D1 protein expression distinguish forebrain progenitor subsets. Cerebral Cortex, 17, 632–642.

    Article  PubMed  Google Scholar 

  45. Kowalczyk, A., Filipkowski, R. K., Rylski, M., Wilczynski, G. M., Konopacki, F. A., Jaworski, J., et al. (2004). The critical role of cyclin D2 in adult neurogenesis. The Journal of Cell Biology, 167, 209–213.

    Article  PubMed  CAS  Google Scholar 

  46. Lukaszewicz, A. I., & Anderson, D. J. (2011). Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner. Proceedings of the National Academy of Sciences of the United States of America, 108, 11632–11637.

    Article  PubMed  CAS  Google Scholar 

  47. Ye, P., Hu, Q., Liu, H., Yan, Y., & D’ercole, A. J. (2010). Beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures. Glia, 58, 1031–1041.

    Article  PubMed  Google Scholar 

  48. Das, D., Lanner, F., Main, H., Andersson, E. R., Bergmann, O., Sahlgren, C., et al. (2010). Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells. Developmental Biology, 348, 153–166.

    Article  PubMed  CAS  Google Scholar 

  49. Ma, J., Yu, Z., Qu, W., Tang, Y., Zhan, Y., Ding, C., et al. (2010). Proliferation and differentiation of neural stem cells are selectively regulated by knockout of cyclin D1. Journal of Molecular Neuroscience, 42, 35–43.

    Article  PubMed  CAS  Google Scholar 

  50. Du, W., & Pogoriler, J. (2006). Retinoblastoma family genes. Oncogene, 25, 5190–5200.

    Article  PubMed  CAS  Google Scholar 

  51. Jiang, Z., Zacksenhaus, E., Gallie, B. L., & Phillips, R. A. (1997). The retinoblastoma gene family is differentially expressed during embryogenesis. Oncogene, 14, 1789–1797.

    Article  PubMed  CAS  Google Scholar 

  52. Classon, M., & Harlow, E. (2002). The retinoblastoma tumour suppressor in development and cancer. Nature Reviews. Cancer, 2, 910–917.

    Article  PubMed  CAS  Google Scholar 

  53. Wirt, S. E., Adler, A. S., Gebala, V., Weimann, J. M., Schaffer, B. E., Saddic, L. A., et al. (2010). G1 arrest and differentiation can occur independently of Rb family function. The Journal of Cell Biology, 191, 809–825.

    Article  PubMed  CAS  Google Scholar 

  54. Vanderluit, J. L., Ferguson, K. L., Nikoletopoulou, V., Parker, M., Ruzhynsky, V., Alexson, T., et al. (2004). p107 regulates neural precursor cells in the mammalian brain. The Journal of Cell Biology, 166, 853–863.

    Article  PubMed  CAS  Google Scholar 

  55. Slack, R. S., Skerjanc, I. S., Lach, B., Craig, J., Jardine, K., & McBurney, M. W. (1995). Cells differentiating into neuroectoderm undergo apoptosis in the absence of functional retinoblastoma family proteins. The Journal of Cell Biology, 129, 779–788.

    Article  PubMed  CAS  Google Scholar 

  56. Vanderluit, J. L., Wylie, C. A., McClellan, K. A., Ghanem, N., Fortin, A., Callaghan, S., et al. (2007). The retinoblastoma family member p107 regulates the rate of progenitor commitment to a neuronal fate. The Journal of Cell Biology, 178, 129–139.

    Article  PubMed  CAS  Google Scholar 

  57. Jori, F. P., Galderisi, U., Napolitano, M. A., Cipollaro, M., Cascino, A., Giordano, A., et al. (2007). RB and RB2/P130 genes cooperate with extrinsic signals to promote differentiation of rat neural stem cells. Molecular and Cellular Neuroscience, 34, 299–309.

    Article  PubMed  CAS  Google Scholar 

  58. Andrusiak, M. G., McClellan, K. A., Dugal-Tessier, D., Julian, L. M., Rodrigues, S. P., Park, D. S., et al. (2011). Rb/E2F regulates expression of neogenin during neuronal migration. Molecular and Cellular Biology, 31, 238–247.

    Article  PubMed  CAS  Google Scholar 

  59. McLear, J. A., Garcia-Fresco, G., Bhat, M. A., & Van Dyke, T. A. (2006). In vivo inactivation of pRb, p107 and p130 in murine neuroprogenitor cells leads to major CNS developmental defects and high seizure rates. Molecular and Cellular Neuroscience, 33, 260–273.

    Article  PubMed  CAS  Google Scholar 

  60. Kusek, J. C., Greene, R. M., & Pisano, M. M. (2001). Expression of the E2f and retinoblastoma families of proteins during neural differentiation. Brain Research Bulletin, 54, 187–198.

    Article  PubMed  CAS  Google Scholar 

  61. Dagnino, L., Fry, C. J., Bartley, S. M., Farnham, P., Gallie, B. L., & Phillips, R. A. (1997). Expression patterns of the E2f family of transcription factors during mouse nervous system development. Mechanisms of Development, 66, 13–25.

    Article  PubMed  CAS  Google Scholar 

  62. Cooper-Kuhn, C. M., Vroemen, M., Brown, J., Ye, H., Thompson, M. A., Winkler, J., et al. (2002). Impaired adult neurogenesis in mice lacking the transcription factor E2f1. Molecular and Cellular Neuroscience, 21, 312–323.

    Article  PubMed  CAS  Google Scholar 

  63. Callaghan, D. A., Dong, L., Callaghan, S. M., Hou, Y. X., Dagnino, L., & Slack, R. S. (1999). Neural precursor cells differentiating in the absence of Rb exhibit delayed terminal mitosis and deregulated E2f1and 3 activity. Developmental Biology, 207, 257–270.

    Article  PubMed  CAS  Google Scholar 

  64. Chong, J. L., Tsai, S. Y., Sharma, N., Opavsky, R., Price, R., Wu, L., et al. (2009). E2f3a and E2f3b contribute to the control of cell proliferation and mouse development. Molecular and Cellular Biology, 29, 414–424.

    Article  PubMed  CAS  Google Scholar 

  65. Zhu, Y., Jin, K., Mao, X. O., & Greenberg, D. A. (2003). Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2f expression. The FASEB Journal, 17, 186–193.

    Article  CAS  Google Scholar 

  66. McClellan, K. A., Vanderluit, J. L., Julian, L. M., Andrusiak, M. G., Dugal-Tessier, D., Park, D. S., et al. (2009). The p107/E2F pathway regulates fibroblast growth factor 2 responsiveness in neural precursor cells. Molecular and Cellular Biology, 29, 4701–4713.

    Article  PubMed  CAS  Google Scholar 

  67. Ping, Z., Lim, R., Bashir, T., Pagano, M., & Guardavaccaro, D. (2012). APC/C (Cdh1) controls the proteasome-mediated degradation of E2f3 during cell cycle exit. Cell Cycle, 11, 1999–2005.

    Article  PubMed  CAS  Google Scholar 

  68. McClellan, K. A., Ruzhynsky, V. A., Douda, D. N., Vanderluit, J. L., Ferguson, K. L., Chen, D., et al. (2007). Unique requirement for Rb/E2f3 in neuronal migration: evidence for cell cycle-independent functions. Molecular and Cellular Biology, 27, 4825–4843.

    Article  PubMed  CAS  Google Scholar 

  69. Zindy, F., Quelle, D. E., Roussel, M. F., & Sherr, C. J. (1997). Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene, 15, 203–211.

    Article  PubMed  CAS  Google Scholar 

  70. Molofsky, A. V., Slutsky, S. G., Joseph, N. M., He, S., Pardal, R., Krishnamurthy, J., et al. (2006). Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature, 443, 448–452.

    Article  PubMed  CAS  Google Scholar 

  71. Chien, K. R., & Karsenty, G. (2005). Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell, 120, 533–544.

    Article  PubMed  CAS  Google Scholar 

  72. Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in Young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135, 227–239.

    Article  PubMed  CAS  Google Scholar 

  73. Liu, Y., Encinas, M., Comella, J. X., Aldea, M., & Gallego, C. (2004). Basic helix-loop-helix proteins bind to TrkB and p21(Cip1) promoters linking differentiation and cell cycle arrest in neuroblastoma cells. Molecular and Cellular Biology, 24, 2662–2672.

    Article  PubMed  CAS  Google Scholar 

  74. Heldring, N., Joseph, B., Hermanson, O., & Kioussi, C. (2012). Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells. CNS & Neurological Disorders Drug Targets, 11, 884–892.

    Article  CAS  Google Scholar 

  75. Jung, G. A., Yoon, J. Y., Moon, B. S., Yang, D. H., Kim, H. Y., Lee, S. H., et al. (2008). Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biology, 9, 66.

    Article  PubMed  Google Scholar 

  76. Pechnick, R. N., Zonis, S., Wawrowsky, K., Pourmorady, J., & Chesnokova, V. (2008). p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 105, 1358–1363.

    Article  PubMed  CAS  Google Scholar 

  77. Pechnick, R. N., Zonis, S., Wawrowsky, K., Cosgayon, R., Farrokhi, C., Lacayo, L., et al. (2011). Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus. PLoS One, 6, e27290.

    Article  PubMed  CAS  Google Scholar 

  78. Kippin, T. E., Martens, D. J., & van der Kooy, D. (2005). p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes & Development, 19, 756–767.

    Article  CAS  Google Scholar 

  79. Bryja, V., Cajánek, L., Pacherník, J., Hall, A. C., Horváth, V., Dvorák, P., et al. (2005). Abnormal development of mouse embryoid bodies lacking p27Kip1 cell cycle regulator. Stem Cells, 23, 965–974.

    Article  PubMed  CAS  Google Scholar 

  80. Paris, M., Wang, W. H., Shin, M. H., Franklin, D. S., & Andrisani, O. M. (2006). Homeodomain transcription factor Phox2a, via cyclic AMP-mediated activation, induces p27Kip1 transcription, coordinating neural progenitor cell cycle exit and differentiation. Molecular and Cellular Biology, 26, 8826–8839.

    Article  PubMed  CAS  Google Scholar 

  81. Zindy, F., Cunningham, J. J., Sherr, C. J., Jogal, S., Smeyne, R. J., & Roussel, M. F. (1999). Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proceedings of the National Academy of Sciences of the United States of America, 96, 13462–13467.

    Article  PubMed  CAS  Google Scholar 

  82. van Lookeren Campagne, M., & Gill, R. (1998). Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21waf1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the protooncogene Bax. The Journal of Comparative Neurology, 397, 181–198.

    Article  PubMed  Google Scholar 

  83. Doetsch, F., Verdugo, J. M., Caille, I., Alvarez-Buylla, A., Chao, M. V., & Casaccia-Bonnefil, P. (2002). Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. The Journal of Neuroscience, 22, 2255–2264.

    PubMed  CAS  Google Scholar 

  84. Qiu, J., Takagi, Y., Harada, J., Topalkara, K., Wang, Y., Sims, J. R., et al. (2009). p27Kip1 constrains proliferation of neural progenitor cells in adult brain under homeostatic and ischemic conditions. Stem Cells, 27, 920–927.

    Article  PubMed  CAS  Google Scholar 

  85. Nguyen, L., Besson, A., Heng, J. I., Schuurmans, C., Teboul, L., Parras, C., et al. (2006). p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes & Development, 20, 1511–1524.

    Article  CAS  Google Scholar 

  86. Casaccia-Bonnefil, P., Hardy, R. J., Teng, K. K., Levine, J. M., Koff, A., & Chao, M. V. (1999). Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development, 126, 4027–4037.

    PubMed  CAS  Google Scholar 

  87. Tury, A., Mairet-Coello, G., & DiCicco-Bloom, E. (2011). The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors. Cerebral Cortex, 21, 1840–1856.

    Article  PubMed  Google Scholar 

  88. Ye, W., Mairet-Coello, G., Pasoreck, E., & Dicicco-Bloom, E. (2009). Patterns of p57Kip2 expression in embryonic rat brain suggest roles in progenitor cell cycle exit and neuronal differentiation. Developmental Neurobiology, 69, 1–21.

    Article  PubMed  CAS  Google Scholar 

  89. Whiteway, S. L., Harris, P. S., Venkataraman, S., Alimova, I., Birks, D. K., Donson, A. M., et al. (2013). Inhibition of cyclin-dependent kinase 6 suppresses cell proliferation and enhances radiation sensitivity in medulloblastoma cells. Journal of Neurooncology, 111, 113–121.

    Article  CAS  Google Scholar 

  90. Germano, I., Swiss, V., & Casaccia, P. (2010). Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link? Neuropharmacology, 58, 903–910.

    Article  PubMed  CAS  Google Scholar 

  91. Moh, C., Kubiak, J. Z., Bajic, V. P., Zhu, X., Smith, M. A., & Lee, H. G. (2011). Cell cycle deregulation in the neurons of Alzheimer’s disease. Results and Problems in Cell Differentiation, 53, 565–576.

    Article  PubMed  CAS  Google Scholar 

  92. Lopes, J. P., & Agostinho, P. (2011). Cdk5: multitasking between physiological and pathological conditions. Progress in Neurobiology, 94, 49–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico (CNPq), Brazil (awarded to H.U.) and the Bundesministerium für Bildung und Forschung, (BMBF), Germany (awarded to A.T); A.C. acknowledges a postdoctoral fellowship from FAPESP.

Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheffer, A., Tárnok, A. & Ulrich, H. Cell Cycle Regulation During Neurogenesis in the Embryonic and Adult Brain. Stem Cell Rev and Rep 9, 794–805 (2013). https://doi.org/10.1007/s12015-013-9460-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9460-5

Keywords

Navigation