Abstract
Stem cells of the adult vertebrate intestine (ISCs) are responsible for the continuous replacement of intestinal cells, but also serve as site of origin of intestinal neoplasms. The interaction between multiple signaling pathways, including Wnt/Wg, Shh/Hh, BMP, and Notch, orchestrate mitosis, motility, and differentiation of ISCs. Many fundamental questions of how these pathways carry out their function remain unanswered. One approach to gain more insight is to look at the development of stem cells, to analyze the “programming” process which these cells undergo as they emerge from the large populations of embryonic progenitors. This review intends to summarize pertinent data on vertebrate intestinal stem cell biology, to then take a closer look at recent studies of intestinal stem cell development in Drosophila. Here, stem cell pools and their niche environment consist of relatively small numbers of cells, and questions concerning the pattern of cell division, niche-stem cell contacts, or differentiation can be addressed at the single cell level. Likewise, it is possible to analyze the emergence of stem cells during development more easily than in vertebrate systems: where in the embryo do stem cells arise, what structures in their environment do they interact with, and what signaling pathways are active sequentially as a result of these interactions. Given the high degree of conservation among genetic mechanisms controlling stem cell behavior in all animals, findings in Drosophila will provide answers that inform research in the vertebrate stem cell field.







Similar content being viewed by others
References
Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V., & Banerjee, U. (2007). The hematopoietic stem cell and its niche: a comparative view. Genes & Development, 21(23), 3044–60.
Xie, T., Kawase, E., Kirilly, D., & Wong, M. D. (2005). Intimate relationships with their neighbors: tales of stem cells in Drosophila reproductive systems. Developmental Dynamics, 232(3), 775–90.
Fuller, M. T., & Spradling, A. C. (2007). Male and female Drosophila germline stem cells: two versions of immortality. Science, 316(5823), 402–4.
Arai, F., & Suda, T. (2007). Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Annals of the New York Academy of Sciences, 1106, 41–53.
Levesque, J. P., Helwani, F. M., & Winkler, I. G. (2010). The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia, 24(12), 1979–92.
Montuenga, L. M., Guembe, L., Burrell, M. A., et al. (2003). The diffuse endocrine system: from embryogenesis to carcinogenesis. Progress in Histochemistry and Cytochemistry, 38(2), 155–272.
Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–5.
Tian, H., Biehs, B., Warming, S., et al. (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 478(7368), 255–9.
Crosnier, C., Stamataki, D., & Lewis, J. (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Reviews Genetics, 7(5), 349–59.
Scoville, D. H., Sato, T., He, X. C., & Li, L. (2008). Current view: intestinal stem cells and signaling. Gastroenterology, 134(3), 849–64.
Bjerknes, M., & Cheng, H. (2006). Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium. Developments in Biologicals, 300(2), 722–35.
Powell, D. W., Mifflin, R. C., Valentich, J. D., Crowe, S. E., Saada, J. I., & West, A. B. (1999). Myofibroblasts. II. Intestinal subepithelial myofibroblasts. American Journal of Physiology, 277(2 Pt 1), C183–201.
Yen, T. H., & Wright, N. A. (2006). The gastrointestinal tract stem cell niche. Stem Cell Reviews, 2(3), 203–12.
McLin, V. A., Henning, S. J., & Jamrich, M. (2009). The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology, 136(7), 2074–91.
Shaker, A., & Rubin, D. C. (2010). Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Translational Research, 156(3), 180–7.
Powell, D. W., Pinchuk, I. V., Saada, J. I., Chen, X., & Mifflin, R. C. (2011). Mesenchymal cells of the intestinal lamina propria. Annual Review of Physiology, 73, 213–37.
Sato, T., van Es, J. H., Snippert, H. J., et al. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469(7330), 415–8.
Haegebarth, A., & Clevers, H. (2009). Wnt signaling, lgr5, and stem cells in the intestine and skin. American Journal of Pathology, 174(3), 715–21.
Yeung, T. M., Chia, L. A., Kosinski, C. M., & Kuo, C. J. (2011). Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cellular and Molecular Life Sciences, 68(15), 2513–23.
Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., & Clevers, H. (2005). Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology, 129(2), 626–38.
Lin, G., Xu, N., & Xi, R. (2008). Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature, 455(7216), 1119–23.
He, X. C., Zhang, J., Tong, W. G., et al. (2004). BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nature Genetics, 36(10), 1117–21.
Jensen, J., Pedersen, E. E., Galante, P., et al. (2000). Control of endodermal endocrine development by Hes-1. Nature Genetics, 24(1), 36–44.
Crosnier, C., Vargesson, N., Gschmeissner, S., Ariza-McNaughton, L., Morrison, A., & Lewis, J. (2005). Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development, 132(5), 1093–104.
van Es, J. H., van Gijn, M. E., Riccio, O., et al. (2005). Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, 435(7044), 959–63.
Fre, S., Bardin, A., Robine, S., & Louvard, D. (2011). Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Experimental Cell Research, 317(19), 2740–7.
Schonhoff, S. E., Giel-Moloney, M., & Leiter, A. B. (2004). Minireview: Development and differentiation of gut endocrine cells. Endocrinology, 145(6), 2639–44.
Lee, C. S., & Kaestner, K. H. (2004). Clinical endocrinology and metabolism. Development of gut endocrine cells. Best Practice & Research. Clinical Endocrinology & Metabolism, 18(4), 453–62.
Hartenstein, V. (2006). The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. Journal of Endocrinology, 190(3), 555–70.
Henning, S. J., Rubin, D. C., & Shulman, R. J. (1994). Ontogeny of the intestinal mucosa. In L. R. Johnson (Ed.), Physiology of the gastrointestinal tract (pp. 571–610). New York, NY: Raven.
Mathan, M., Moxey, P. C., & Trier, J. S. (1976). Morphogenesis of fetal rat duodenal villi. The American Journal of Anatomy, 146(1), 73–92.
Madara, J. L., Neutra, M. R., & Trier, J. S. (1981). Junctional complexes in fetal rat small intestine during morphogenesis. Developments in Biologicals, 86(1), 170–8.
Kim, B. M., Mao, J., Taketo, M. M., & Shivdasani, R. A. (2007). Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology, 133(2), 529–38.
Ishizuya-Oka, A., & Shi, Y. B. (2007). Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Developmental Dynamics, 236(12), 3358–68.
Ramalho-Santos, M., Melton, D. A., & McMahon, A. P. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development, 127(12), 2763–72.
Madison, B. B., Braunstein, K., Kuizon, E., Portman, K., Qiao, X. T., & Gumucio, D. L. (2005). Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development, 132(2), 279–89.
Mao, J., Kim, B. M., Rajurkar, M., Shivdasani, R. A., & McMahon, A. P. (2010). Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development, 137(10), 1721–9.
Batts, L. E., Polk, D. B., Dubois, R. N., & Kulessa, H. (2006). Bmp signaling is required for intestinal growth and morphogenesis. Developmental Dynamics, 235(6), 1563–70.
Torihashi, S., Hattori, T., Hasegawa, H., Kurahashi, M., Ogaeri, T., & Fujimoto, T. (2009). The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut. Differentiation, 77(3), 277–89.
Skaer, H. (1993). The alimentary canal. In M. Bate & A. Martinez-Arias (Eds.), The development of Drosophila melanogaster (pp. 941–1012). Plainview, NY: Cold Spring Habor Laboratory Press.
Dubreuil, R. R. (2004). Copper cells and stomach acid secretion in the Drosophila midgut. The International Journal of Biochemistry & Cell Biology, 36(5), 745–52.
Veenstra, J. A., Agricola, H. J., & Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell and Tissue Research, 334(3), 499–516.
Veenstra, J. A. (2009). Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell and Tissue Research, 336(2), 309–23.
Hartenstein, V., Takashima, S., & Adams, K. L. (2010). Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila. General and Comparative Endocrinology, 166(3), 462–9.
Takashima, S., Adams, K. L., Ortiz, P. A., et al. (2011). Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Developments in Biologicals, 353(2), 161–72.
Micchelli, C. A., & Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 439(7075), 475–9.
Ohlstein, B., & Spradling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 439(7075), 470–4.
Singh, S. R., Liu, W., & Hou, S. X. (2007). The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell, 1(2), 191–203.
Takashima, S., Mkrtchyan, M., Younossi-Hartenstein, A., Merriam, J. R., & Hartenstein, V. (2008). The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature, 454(7204), 651–5.
Singh, S. R., Zeng, X., Zheng, Z., & Hou, S. X. (2011). The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle, 10(7), 1109–20.
Fox, D. T., & Spradling, A. C. (2009). The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell, 5(3), 290–7.
Lee, W. C., Beebe, K., Sudmeier, L., & Micchelli, C. A. (2009). Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development, 136(13), 2255–64.
Xu, N., Wang, S. Q., Tan, D., Gao, Y., Lin, G., & Xi, R. (2011). EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Developments in Biologicals, 354(1), 31–43.
Ohlstein, B., & Spradling, A. (2007). Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science, 315(5814), 988–92.
Fre, S., Huyghe, M., Mourikis, P., Robine, S., Louvard, D., & Artavanis-Tsakonas, S. (2005). Notch signals control the fate of immature progenitor cells in the intestine. Nature, 435(7044), 964–8.
Wang, P., & Hou, S. X. (2010). Regulation of intestinal stem cells in mammals and Drosophila. Journal of Cellular Physiology, 222(1), 33–7.
Bowman, S. K., Rolland, V., Betschinger, J., Kinsey, K. A., Emery, G., & Knoblich, J. A. (2008). The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Developmental Cell, 14(4), 535–46.
Maeda, K., Takemura, M., Umemori, M., & Adachi-Yamada, T. (2008). E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure Notch signaling in adult Drosophila midgut. Genes to Cells, 13(12), 1219–27.
Jiang, H., Grenley, M. O., Bravo, M. J., Blumhagen, R. Z., & Edgar, B. A. (2011). EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell, 8(1), 84–95.
Jiang, H., Patel, P. H., Kohlmaier, A., Grenley, M. O., McEwen, D. G., & Edgar, B. A. (2009). Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell, 137(7), 1343–55.
Liu, W., Singh, S. R., & Hou, S. X. (2010). JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. Journal of Cellular Biochemistry, 109(5), 992–9.
Buchon, N., Broderick, N. A., Chakrabarti, S., & Lemaitre, B. (2009). Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes & Development, 23(19), 2333–44.
Cronin, S. J., Nehme, N. T., Limmer, S., et al. (2009). Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science, 325(5938), 340–3.
Shaw, R. L., Kohlmaier, A., Polesello, C., Veelken, C., Edgar, B. A., & Tapon, N. (2010). The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development, 137(24), 4147–58.
Ren, F., Wang, B., Yue, T., Yun, E. Y., Ip, Y. T., & Jiang, J. (2010). Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 21064–9.
Karpowicz, P., Perez, J., & Perrimon, N. (2010). The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development, 137(24), 4135–45.
Campos-Ortega, J. A., & Hartenstein, V. (1985). The Embryonic development of Drosophila melanogaster. Berlin: Springer.
Tepass, U., & Hartenstein, V. (1994). Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development, 120(3), 579–90.
Jiang, H., & Edgar, B. A. (2009). EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development, 136(3), 483–93.
Mathur, D., Bost, A., Driver, I., & Ohlstein, B. (2010). A transient niche regulates the specification of Drosophila intestinal stem cells. Science, 327(5962), 210–3.
Takashima, S., Younossi-Hartenstein, A., Ortiz, P. A., & Hartenstein, V. (2011). A novel tissue in an established model system: the Drosophila pupal midgut. Development Genes and Evolution, 221(2), 69–81.
Robertson, C. W. (1936). The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. Journal of Morphology, 59(2), 351–99.
Takashima S, Aghajanian P, Paul M, Younossi-Hartenstein A, Hartenstein V. Trans-germ layer migration of Drosophila intestinal stem cells at the developing midgut-hindgut boundary (submitted)
Klapper, R. (2000). The longitudinal visceral musculature of Drosophila melanogaster persists through metamorphosis. Mechanisms of Development, 95(1–2), 47–54.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Takashima, S., Hartenstein, V. Genetic Control of Intestinal Stem Cell Specification and Development: A Comparative View. Stem Cell Rev and Rep 8, 597–608 (2012). https://doi.org/10.1007/s12015-012-9351-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12015-012-9351-1