Skip to main content
Log in

The Regenerative Potential of the Kidney: What Can We Learn from Developmental Biology?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cell turnover in the healthy adult kidney is very slow but the kidney has a strong capacity for regeneration after acute injury. Although many molecular aspects of this process have been clarified, the source of the newly-formed renal epithelial cells is still being debated. Several studies have shown, moreover, that the repair of injured renal epithelium starts from mature tubular cells, which enter into an activated proliferative state characterized by the reappearance of mesenchymal markers detectable during nephrogenesis, thus pointing to a marked plasticity of renal epithelial cells. The regenerative potential of mature epithelial cells might stem from their almost unique morphogenetic process. Unlike other tubular organs, all epithelial and mesenchymal cells in the kidney derive from the same germ layer, the mesoderm. In a fascinating view of vertebrate embryogenesis, the mesoderm might be seen as a cell layer capable of oscillating between epithelial and mesenchymal states, thus acquiring a remarkable plasticity that lends it an extended potential for innovation and a better control of three-dimensional body organization. The renal papilla contains a population of cells with the characteristic of adult stem cells. Mesenchymal stromal stem cells (MSC) have been found to reside in the connective tissue of most organs, including the kidney. Recent studies indicate that the MSC compartment extends throughout the body postnatally as a result of its perivascular location. Developmental biology suggests that this might be particularly true of the kidney and that the papilla might represent the perivascular renal stem cell niche. The perivascular niche hypothesis fits well with the evolving concept of the stem cell niche as an entity of action. It is its dynamic capability that makes the niche concept so important and essential to the feasibility of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Little, M. H. (2006). Regrow or repair: potential regenerative therapies for the kidney. Journal of the American Society of Nephrology, 17, 2390–401.

    Article  PubMed  Google Scholar 

  2. Witzgall, R., Brown, D., Schwarz, C., & Bonventre, J. V. (1994). Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. Journal of Clinical Investigation, 93, 2175–2188.

    Article  CAS  PubMed  Google Scholar 

  3. Bonventre, J. V. (2003). Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. Journal of the American Society of Nephrology, suppl 1, S55–S61.

  4. Maeshima, A., Yamashita, S., & Nojima, Y. (2003). Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. Journal of the American Society of Nephrology, 14, 3138–3146.

    Article  PubMed  Google Scholar 

  5. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P., & Al-Awqati, Q. (2004). The renal papilla is a niche for adult kidney stem cells. Journal of Clinical Investigation, 114, 795–804.

    CAS  PubMed  Google Scholar 

  6. Dekel, B., Zangi, L., Shezen, E., et al. (2006). Isolation and characterization of non tubular sca-1 + lin- multipotent stem/progenitor cells from adult mouse kidney. Journal of the American Society of Nephrology, 17, 3300–3314.

    Article  PubMed  Google Scholar 

  7. Gupta, S., Verfaillie, C., Chmielewski, D., et al. (2006). Isolation and characterization of kidney-derived stem cells. Journal of the American Society of Nephrology, 17, 3028–3040.

    Article  CAS  PubMed  Google Scholar 

  8. Poulsom, R., Alison, M. R., Cook, T., et al. (2003). Bone marrow stem cells contribute to healing of the kidney. Journal of the American Society of Nephrology, suppl 1, S48–S54.

  9. McTaggart, S. J., & Atkinson, K. (2007). Mesenchymal stem cells: immunobiology and therapeutic potential in kidney disease. Nephrology, 12, 44–52.

    Article  CAS  PubMed  Google Scholar 

  10. Little, M. H., & Bertram, J. F. (2009). Is there such a thing as a renal stem cell? Journal of the American Society of Nephrology, 20, 2112–2117.

    Article  CAS  PubMed  Google Scholar 

  11. Hishikawa, K., Marumo, T., Miura, S., Nakanishi, A., Matsuzaki, Y., & Shibata, K. (2005). Musculin/MyoR is expressed in kidney side population cells and can regulate their function. The Journal of Cell Biology, 169, 921–928.

    Article  CAS  PubMed  Google Scholar 

  12. Challen, G. A., Bertoncello, I., Deane, J. A., Ricardo, S. D., & Little, M. H. (2006). Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. Journal of the American Society of Nephrology, 17, 1896–1912.

    Article  CAS  PubMed  Google Scholar 

  13. Lazzeri, E., Crescioli, C., Ronconi, E., et al. (2007). Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. Journal of the American Society of Nephrology, 18, 3128–3138.

    Article  CAS  PubMed  Google Scholar 

  14. Sagrinati, C., Netti, G. S., Mazzinghi, B., et al. (2006). Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. Journal of the American Society of Nephrology, 17, 2443–2456.

    Article  CAS  PubMed  Google Scholar 

  15. Bruno, S., Bussolati, B., Grange, C., et al. (2009). Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells and Development, 18, 867–880.

    Article  CAS  PubMed  Google Scholar 

  16. Bussolati, B., Bruno, S., Grange, C., et al. (2005). Isolation of renal progenitor cells from adult human kidney. The American Journal of Pathology, 166, 545–555.

    CAS  PubMed  Google Scholar 

  17. Kitamura, S., Yamasaki, Y., Kinomura, M., et al. (2005). Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. The FASEB Journal, 2005(19), 1789–1797.

    Article  Google Scholar 

  18. Yamashita, S., Maeshima, A., & Nojima, Y. (2005). Involvement of renal progenitor tubular cells in epithelial-to-mesenchymal transition in fibrotic rat kidneys. Journal of the American Society of Nephrology, 16, 2044–2051.

    Article  CAS  PubMed  Google Scholar 

  19. Markovìc-Lipkovsky, J., Muller, C. A., Klein, G., et al. (2007). Neural cell adhesion molecule expression on renal interstitial cells. Nephrology, Dialysis, Transplantation, 22, 1558–1566.

    Article  Google Scholar 

  20. Lee, P. T., Lin, H. H., Jiang, S. T., et al. (2010). Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury. Stem Cells, 28(3), 573–84.

    CAS  PubMed  Google Scholar 

  21. Ito, M., Liu, Y., Yang, Z., et al. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Natural Medicines, 2005(11), 1351–1354.

    Article  Google Scholar 

  22. Crosby, H. A., & Strain, A. J. (2001). Adult liver stem cells: bone marrow, blood, or liver derived? Gut, 48, 153–154.

    Article  CAS  PubMed  Google Scholar 

  23. Vogetseder, A., Karadeniz, A., Kaissling, B., & Le Hir, M. (2005). Tubular cell proliferation in the healthy rat kidney. Histochemistry and Cell Biology, 124, 97–104.

    Article  CAS  PubMed  Google Scholar 

  24. Vogetseder, A., Palan, T., Bacic, D., Kaissling, B., & Le Hir, M. (2007). Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney. American Journal of Physiology. Cell Physiology, 292, C807–C813.

    Article  CAS  PubMed  Google Scholar 

  25. Vogetseder, A., Picard, N., Gaspert, A., Walch, M., Kaissling, B., & Le Hir, M. (2008). The proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells. American Journal of Physiology. Cell Physiology, 294, C22–C28.

    Article  CAS  PubMed  Google Scholar 

  26. Humphreys, B. D., Valerius, M. T., Kobayashi, A., et al. (2008). Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell, 2, 284–291.

    Article  CAS  PubMed  Google Scholar 

  27. Lin, F., Moran, A., & Igarashi, P. (2005). Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. Journal of Clinical Investigation, 115, 1756–1764.

    Article  CAS  PubMed  Google Scholar 

  28. Anglani, F., Ceol, M., Mezzabotta, F., et al. (2008). The renal stem cell system kidney repair and regeneration. Frontiers in Bioscience, 13, 6395–6405.

    Article  CAS  PubMed  Google Scholar 

  29. Zavadil, J., & Böttinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.

    Article  CAS  PubMed  Google Scholar 

  30. Kalluri, R., & Weinberg, R. A. (2009). The basic of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119, 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Pomares, J. M., & Munoz-Chapuli, R. (2002). Epithelial-mesenchymal transition: A mesodermal cell strategy for evolutive innovation in metazoans. The Anatomical Record, 268, 343–351.

    Article  CAS  PubMed  Google Scholar 

  32. Acloque, H., & Adams, M. S. (2009). Epithelial-mesenchymal transition: the importance of changing cell state in development and disease. Journal of Clinical Investigation, 119, 1438–1449.

    Article  CAS  PubMed  Google Scholar 

  33. Hay, E. D. (1968). Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In R. Fleischmajer & R. E. Billingham (Eds.), Epithelial-mesenchymal interactions (pp. 31–55). Baltimore: Williams and Wilkins.

    Google Scholar 

  34. Gilbert, S. F. (1995). Developmental biology (p. 894). Sunderland: Sinauer Associates.

    Google Scholar 

  35. Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–15.

    Article  CAS  PubMed  Google Scholar 

  36. Swetha, G., Chandra, V., Phadnis, S., & Bhonde, R. (2009). Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J Cell Mol Med. Oct 16 [Epub ahead of print]

  37. Bianchi, G., Muraglia, A., Daga, A., Corte, G., Cancedda, R., & Quarto, R. (2001). Microenvironment and stem properties of bone-marrow derived mesenchymal cells. Wound Repair and Regeneration, 9, 460–466.

    Article  CAS  PubMed  Google Scholar 

  38. Oliver, J. A., Klinakis, A., Cheema, F. K., et al. (2009). Proliferation and migration of label-retaining cells of the kidney papilla. Journal of the American Society of Nephrology, 20(11), 2315–2327.

    Article  PubMed  Google Scholar 

  39. Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  40. da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells in virtually all post-natal organs and tissues. Journal of Cell Science, 119, 2204–2213.

    Article  PubMed  Google Scholar 

  41. Crisan, M., Yap, S., Casteilla, L. A., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    Article  CAS  PubMed  Google Scholar 

  42. Diaz-Flores, L., Gutièrrez, R., Madrid, J. F., et al. (2009). Pericytes. Morphofunction, interaction and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopatol, 24, 909–969.

    CAS  Google Scholar 

  43. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 25, 2896–2902.

    Article  PubMed  Google Scholar 

  44. Johnson, R. C., Leopold, J. A., & Loscalzo, J. (2006). Vascular calcification: pathobiological mechanisms and clinical implications. Circulation Research, 99, 1044–1059.

    Article  CAS  PubMed  Google Scholar 

  45. Covas, D. T., Panepucci, R. A., Fontes, A. M., et al. (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene—expression profile with CD146+ perivascular cells and fibroblasts. Experimental Hematology, 36, 642–654.

    Article  CAS  PubMed  Google Scholar 

  46. Plotkin, M. D., & Goligorsky, M. S. (2006). Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erytropoietin-producing fibroblast. American Journal of Physiology-Renal Physiology, 291, F902–F912.

    Article  CAS  PubMed  Google Scholar 

  47. Chen, J., Park, H. C., Addabbo, F., et al. (2008). Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney International, 74, 879–889.

    Article  CAS  PubMed  Google Scholar 

  48. Patschan, D., Michurina, T., Shi, H. K., et al. (2007). Normal distribution and medullary-to-cortical shift of Nestin—expressing cells acute renal ischemia. Kidney International, 71, 744–754.

    Article  CAS  PubMed  Google Scholar 

  49. Huang, Y., Johnston, P., Zhang, B., et al. (2009). Kidney-derived stromal cells modulate dendritic and T cell responses. Journal of the American Society of Nephrology, 20, 831–841.

    Article  CAS  PubMed  Google Scholar 

  50. Park, F., Mattson, D. L., Roberts, L. A., & JR, C. A. W. (1997). Evidence for the presence of smooth muscle α-actin within pericytes of the renal medulla. Am J Physiol Regulatory Integrative Comp Physiol, 273, 1742–1748.

    Google Scholar 

  51. Michos, O. (2009). Kidney development: from ureteric bud formation to branching morphogenesis. Current Opin Genet Dev, 19, 484–490.

    Article  CAS  Google Scholar 

  52. Guillaume, R., Bressan, M., & Herzlinger, D. (2009). Paraxial mesoderm contributes stromal cells to the developing kidney. Developmental Biology, 329, 169–175.

    Article  CAS  PubMed  Google Scholar 

  53. Anglani, F., Forino, M., Del Prete, D., Tosetto, E., Torregrossa, R., & D’Angelo, A. (2004). In search of adult renal stem cells. Journal of Cellular and Molecular Medicine, 8, 474–487.

    Article  CAS  PubMed  Google Scholar 

  54. Ekblon, P., & Weller, A. (1991). Ontogeny of tubular interstitial cells. Kidney International, 39, 394–400.

    Article  Google Scholar 

  55. Al-Awati, Q., & Oliver, J. A. (2002). Stem cells in the kidney. Kidney International, 61, 387–397.

    Article  Google Scholar 

  56. Dressler, R. D. (2009). Advances in early kidney specification, development and patterning. Development, 136, 3863–3874.

    Article  CAS  PubMed  Google Scholar 

  57. Cullen-McEwen, L. A., Caruana, G., & Bertran, J. F. (2005). The where, what and why of the developing renal stroma. Experimental Nephrology, 99, e1–e8.

    Article  PubMed  Google Scholar 

  58. Vaughan, M. R., & Quaggin, S. E. (2008). How do mesangial and endothelial cells form glomerular tuft. Journal of the American Society of Nephrology, 19, 24–33.

    Article  PubMed  Google Scholar 

  59. Tonlorenzi, R., Dellavalle, A., Schnapp, E., Cossu, G., & Sampaolesi, M. (2007). Isolation and characterization of mesoangioblasts from mouse, dog and human tissue. Curr Proc Stem Biol, chapter 2:unit 2B.1.

  60. Brunelli, S., Tagliafico, E., De Angelis, F. G., et al. (2004). Msx2 and necdin combined activities are required for smooth muscle differentiation in mesoangioblast stem cells. Circulation Research, 94, 1571–1578.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant No. CPDA085494 from the University of Padua.

Conflicts of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Anglani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anglani, F., Mezzabotta, F., Ceol, M. et al. The Regenerative Potential of the Kidney: What Can We Learn from Developmental Biology?. Stem Cell Rev and Rep 6, 650–657 (2010). https://doi.org/10.1007/s12015-010-9186-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9186-6

Keywords

Navigation