Skip to main content

Advertisement

Log in

A Consensus Statement Addressing Mesenchymal Stem Cell Transplantation for Multiple Sclerosis: It’s Time!

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Multiple sclerosis is a neurodegenerative disease of the central nervous system that is characterized by inflammation, demyelination with associated accumulation of myelin debris, oligodendrocyte and axonal loss. Current therapeutic interventions for multiple sclerosis predominantly modulate the immune system and reduce the inflammatory insult by general, non-specific mechanisms but have little effect on the neurodegenerative component of the disease. Predictably, the overall long-term impact of treatment is limited since the neurodegenerative component of the disease, which can be the dominant process in some patients, determines permanent disability. Mesenchymal stem cells, which are endowed with potent immune regulatory and neuroprotective properties, have recently emerged as promising cellular vehicles for the treatment of MS. Preclinical evaluation in experimental models of MS have shown that MSCs are efficacious in suppressing clinical disease. Mechanisms that may underlie these effects predominantly involve the secretion of immunomodulatory and neurotrophic growth factors, which collectively act to limit CNS inflammation, stimulate neurogenesis, protect axons and promote remyelination. As a logical progression to clinical utility, the safety of these cells have been initially assessed in hematological, cardiac and inflammatory diseases. Importantly, transplantation with autologous or allogeneic MSCs has been well tolerated by patients with few significant adverse effects. On the basis of these results, new, multicentre clinical trials have been launched to assess the safety and efficacy of MSCs for inflammatory MS. It thus comes as no surprise that the coalescence of an international group of experts have convened to generate a consensus guide for the transplantation of autologous bone marrow-derived MSC which, in time, may set the foundation for the next generation of therapies for the treatment of MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sospedra, M., & Martin, R. (2005). Immunology of multiple sclerosis. Annual Review of Immunology, 23, 683–747.

    Article  CAS  PubMed  Google Scholar 

  2. Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (1999). IL-17 and Th17 cells. Annual Review of Immunology, 27, 485–517.

    Article  Google Scholar 

  3. Steinman, L. (2001). Multiple sclerosis: a two-stage disease. Nature Immunology, 2, 762–765.

    Article  CAS  PubMed  Google Scholar 

  4. Trapp, B. D., Matyszak, M. K., Esiri, M. M., Rudick, R., Mork, S., & Bo, L. (1998). Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine, 338, 278–285.

    Article  CAS  PubMed  Google Scholar 

  5. Siatskas, C., & Bernard, C. C. (2009). Stem cell and gene therapeutic strategies for the treatment of multiple sclerosis. Current Molecular Medicine, 9, 992–1016.

    Article  CAS  PubMed  Google Scholar 

  6. Steinman, L. (2001). Immunotherapy of multiple sclerosis: the end of the beginning. Current Opinion in Immunology, 13, 597–600.

    Article  CAS  PubMed  Google Scholar 

  7. Franklin, R. J. (2002). Why does remylenation fail in muliple sclerosis? Nature Reviews. Neuroscience, 3, 705–714.

    Article  CAS  PubMed  Google Scholar 

  8. Meirelles Lda, S., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119, 2204–2213.

    Article  Google Scholar 

  9. Caplan, A. I. (2008). All MSCs are pericytes? Cell Stem Cell, 3, 229–230.

    Article  CAS  PubMed  Google Scholar 

  10. Phinney, D. G., Hill, K., Michelson, C., et al. (2006). Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells, 24, 186–198.

    Article  PubMed  Google Scholar 

  11. Pedemonte, E., Benvenuto, F., Casazza, S., et al. (2007). Molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse. BMC Genomics, 8, 65.

    Article  PubMed  Google Scholar 

  12. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  13. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as source of hepatic oval cells. Science, 284, 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  14. Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711–10716.

    Article  CAS  PubMed  Google Scholar 

  15. Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L., & Davies, J. E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE, 4, e6498.

    Article  PubMed  Google Scholar 

  16. Payne, N., Siatskas, C., & Bernard, C. C. A. (2008). The promise of stem cell and regenerative therapies for multiple sclerosis. Journal of Autoimmunity, 31, 288–294.

    Article  CAS  PubMed  Google Scholar 

  17. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8, 726–736.

    Article  CAS  PubMed  Google Scholar 

  18. Fox, J., Chamberlain, G., Ashton, B. A., & Middleton, J. (2009). Recent advances into the understanding of mesenchymal stem cell trafficking. British Journal Haematology, 137, 491–502.

    Article  Google Scholar 

  19. Karp, J. M., & Teo, G. S. L. (2009). Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, 4, 206–216.

    Article  CAS  PubMed  Google Scholar 

  20. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, X. X., Zhang, Y., Liu, B., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.

    Article  CAS  PubMed  Google Scholar 

  22. Beyth, S., Borovsky, Z., Mevorach, D., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.

    Article  CAS  PubMed  Google Scholar 

  23. Németh, K., Leelahavanichkul, A., Yuen, P. S., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medecine, 15, 42–49.

    Article  Google Scholar 

  24. Uccelli, A., & Mancardi, G. (2010). Stem cell transplantation in multiple sclerosis. Current Opinion in Neurology, 23, 218–225.

    Article  PubMed  Google Scholar 

  25. Rafei, M., Campeau, P. M., Aguilar-Mahecha, A., et al. (2009). Mesenchymal stromal cells ameliorate experimental encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. Journal of Immunology, 182, 5994–6002.

    Article  CAS  Google Scholar 

  26. Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cell embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.

    Article  CAS  PubMed  Google Scholar 

  27. Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    Article  PubMed  Google Scholar 

  28. Krampera, M., Glennie, S., Dyson, J., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101, 3722–3729.

    Article  CAS  PubMed  Google Scholar 

  29. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105, 2821–2827.

    Article  CAS  PubMed  Google Scholar 

  30. Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107, 1484–1490.

    Article  CAS  PubMed  Google Scholar 

  31. Rasmusson, I., Ringden, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.

    Article  PubMed  Google Scholar 

  32. Bai, L., Lennnon, D. P., Eaton, V., et al. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 57, 1192–1203.

    Article  PubMed  Google Scholar 

  33. Selmani, Z., Naji, A., Gaiffe, E., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 + CD25highFoxP3+ regulatory T cells. Stem Cells, 26, 212–222.

    Article  CAS  PubMed  Google Scholar 

  34. Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

    Article  CAS  PubMed  Google Scholar 

  35. Rafei, M., Hsieh, J., Fortier, S., et al. (2008). Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood, 112, 4991–4998.

    Article  CAS  PubMed  Google Scholar 

  36. Augello, A., Tasso, R., Negrini, S., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35, 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  37. Zappia, E., Casazza, S., Pedemonte, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.

    Article  CAS  PubMed  Google Scholar 

  38. Gerdoni, E., Gallo, B., Casazza, S., et al. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 61, 219–227.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, L. R., Duan, W. M., Reyes, M., Keene, C. D., Verfaillie, C. M., & Low, W. C. (2002). Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology, 174, 11–20.

    Article  PubMed  Google Scholar 

  40. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.

    Article  PubMed  Google Scholar 

  41. Johansson, C. B., Youssef, S., Koleckar, K., et al. (2008). Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biology, 10, 575–583.

    Article  CAS  PubMed  Google Scholar 

  42. Singec, I., & Snyder, E. Y. (2008). Inflammation as a matchmaker: revisiting cell fusion. Nature Cell Biology, 10, 503–505.

    Article  CAS  PubMed  Google Scholar 

  43. Rivera, F. J., Couillard-Despres, S., Pedre, X., et al. (2006). Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells, 24, 2209–2219.

    Article  CAS  PubMed  Google Scholar 

  44. Munoz, J.R., Stoutenger, B. R., Robinson, A. P., Spees, J. L., & Prockop, D. J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA; 105:18171-6.

  45. Kemp, K., Hares, K., Mallam, E., Heesom, K. J., Scolding, N., & Wilkins, A. (2009). Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem [Epub ahead of print].

  46. Crigler, L., Robey, R. C., Asawachaicharn, A., Gaupp, D., & Phinney, D. G. (2006). Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Experimental Neurology, 198, 54–64.

    Article  CAS  PubMed  Google Scholar 

  47. Lanza, C., Morando, S., Voci, A., et al. (2009). Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. Journal of Neurochemistry, 110, 1674–1684.

    Article  CAS  PubMed  Google Scholar 

  48. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027.

    Article  CAS  PubMed  Google Scholar 

  49. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Medicine, 5, 309–313.

    Article  CAS  PubMed  Google Scholar 

  50. Bartholomew, A., Sturgeon, C., Siatskas, M., et al. (2002). Mesenchymal stem cells promote survival lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30, 367–372.

    Article  Google Scholar 

  51. Mao, F., Xu, W. R., Qian, H., et al. (2010). Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflammation Research, 59, 219–225.

    Article  CAS  PubMed  Google Scholar 

  52. Fiorina, P., Jurewicz, M., Augello, A., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology, 183, 993–1004.

    Article  CAS  Google Scholar 

  53. Schena, F., Gambini, C., Gregorio, A., et al. (2010). IFN-gamma dependent inhibition of B cell activation by bone marrow derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum. 2010 May 21. [Epub ahead of print].

  54. Kassis, I., Grigoriadis, N., Gowda-Kurkalli, B., et al. (2008). Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Archives of Neurology, 65, 753–761.

    Article  PubMed  Google Scholar 

  55. Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–1586.

    Article  PubMed  Google Scholar 

  56. Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft versus host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441.

    Article  PubMed  Google Scholar 

  57. Okamoto, R., Yajima, T., Yamazaki, M., et al. (2002). Damaged epithelia generated by bone marrow-derived cells in the human gastrointestinal tract. Nature Medicine, 8, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  58. Ball, L. M., Bernardo, M. E., Roelofs, H., et al. (2007). Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood, 110, 2764–2767.

    Article  CAS  PubMed  Google Scholar 

  59. Williams, B. A., & Keating, A. (2008). Cell therapy for age-related disorders: myocardial infarction and stroke - a mini review. Gerontology, 54, 300–311.

    Article  PubMed  Google Scholar 

  60. Koc, O. N., Gerson, S. L., Cooper, B. W., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18, 307–316.

    CAS  PubMed  Google Scholar 

  61. Lazarus, H., Koc, O. N., Devine, S. M., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11, 389–398.

    Article  PubMed  Google Scholar 

  62. Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., et al. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iranian Journal of Immunology, 4, 50–57.

    PubMed  Google Scholar 

  63. Slavin, S., Kurkalli, B. G. S., & Karussis, D. (2008). The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. Clinical Neurology and Neurosurgery, 110, 943–946.

    Article  PubMed  Google Scholar 

  64. Tyndall, A. (2010). Mesenchymal stem cells for multiple sclerosis: can we find the answer? Multiple Sclerosis, 16, 386.

    Article  PubMed  Google Scholar 

  65. Djouad, F., Plence, P., Bony, C., et al. (2003). Immunosuppressive effect of mesnechymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.

    Article  CAS  PubMed  Google Scholar 

  66. Kidd, S., Spaeth, E., Dembinski, J. L., et al. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27, 2614–2623.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, H., Cao, F., De, A., et al. (2009). Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 27, 1548–1558.

    Article  CAS  PubMed  Google Scholar 

  68. Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557–563.

    Article  CAS  PubMed  Google Scholar 

  69. Rubio, D., Garcia-Castro, J., Martin, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65, 3035–3039.

    CAS  PubMed  Google Scholar 

  70. Tolar, J., Nauta, A. J., Osborn, M. J., et al. (2006). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25, 371–379.

    Article  PubMed  Google Scholar 

  71. Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67, 9142–9149.

    Article  CAS  PubMed  Google Scholar 

  72. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106, 4057–4065.

    Article  CAS  PubMed  Google Scholar 

  73. Kastrinaki, M. C., Sidiropoulos, P., Roche, S., et al. (2007). Functional, molecular and proteomic characterization of bone marrow mesnechymal stem cells in rheumatoid arthritis. Annals of the Rheumatic Diseases, 67, 741–749.

    Article  PubMed  Google Scholar 

  74. Mazzanti, B., Aldinucci, A., Biagioli, T., et al. (2008). Differences in mesenchymal stem cell cytokine profiles between MS patients and healthy donors: Implication for assessment of disease activity and treatment. Journal of Neuroimmunology, 199, 142–150.

    Article  CAS  PubMed  Google Scholar 

  75. Bocelli-Tyndall, C., Bracci, L., Spagnoli, G., et al. (2006). Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology, 46, 403–408.

    Article  PubMed  Google Scholar 

  76. Allison, M. (2009). Genzyme backs Osiris, despite Prochymal flop. Nature Biotechnology, 27, 966–967.

    Article  CAS  PubMed  Google Scholar 

  77. Martino, G., Franklin, R. J. M., Evercooren, A. B. V., & Kerr, D. A. (2010). Stem cell transplantion in multiple sclerosis: current status and future prospects. Nature Reviews Neurology, 6, 247–255.

    Article  PubMed  Google Scholar 

  78. Freedman, M. S., Bar-Or, A., Atkins, H. L., et al. (2010). The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Multiple Sclerosis, 16, 503–510.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by grants from the Baker Foundation, the National Health and Medical Research Council of Australia, Cure MS Inc. Ltd, Diane Asmar funds, Bethlehem Griffiths Research Foundation and the Multiple Sclerosis Society of New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Siatskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siatskas, C., Payne, N.L., Short, M.A. et al. A Consensus Statement Addressing Mesenchymal Stem Cell Transplantation for Multiple Sclerosis: It’s Time!. Stem Cell Rev and Rep 6, 500–506 (2010). https://doi.org/10.1007/s12015-010-9173-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9173-y

Keywords