Skip to main content
Log in

Epiblast/Germ Line Hypothesis of Cancer Development Revisited: Lesson from the Presence of Oct-4+ Cells in Adult Tissues

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The morphology of several tumors mimics developmentally early tissues; tumors often express early developmental markers characteristic for the germ line lineage. Recently, our group identified a population of very small stem cells (SCs) in murine bone marrow (BM) and other adult organs that express several markers characteristic for epiblast/germ line-derived SCs. We named these rare cells “Very Small Embryonic/Epiblast-like Stem Cells (VSELs).” We hypothesized that these cells that express both epiblast and germ line markers are deposited during early gastrulation in developing tissues and organs and play an important role in the turnover of tissue-committed (TC) SCs. To support this, we envision that the germ line is not only the origin of SCs, but also remains as a scaffold or back-up for the SC compartment in adult life. Furthermore, we noticed that VSELs are protected from uncontrolled proliferation and teratoma formation by a unique DNA methylation pattern in some developmentally crucial imprinted genes, which show hypomethylation or erasure of imprints in paternally methylated genes and hypermethylation of imprints in the maternally methylated. In pathological situations, however, we hypothesize that VSELs could be involved in the development of several malignancies. Therefore, potential involvement of VSELs in cancerogenesis could support century-old concepts of embryonic rest- or germ line-origin hypotheses of cancer development. However, we are aware that this working hypothesis requires further direct experimental confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

BMMNC:

Bone marrow mononuclear cell

C/T:

Cancer testis

DMR:

Differently methylated region

dpc:

Days post-conception

EGC:

Embryonic germ cell

ESC:

Embryonic stem cell

FACS:

Fluorescence-activated cell sorting

FC:

Flow cytometry

GC:

Germ cell

HSC:

Hematopoietic stem cell

ICM:

Inner cell mass

Igf1R:

Insulin-like growth factor 1 receptor

Igf2:

Insulin-like growth factor 2

Igf2R:

Igf2 receptor

ISS:

ImageStream system

PGC:

Primordial germ cell

PSC:

Pluripotent stem cell

Rasgrf1:

Ras protein-specific guanine nucleotide-releasing factor 1

SC:

Stem cell

SSEA-1:

Stage-specific embryonic antigen-1

TCSC:

Tissue-committed stem cell

VSEL:

Very small embryonic/epiblast-like stem cell

References

  1. Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.

    Article  CAS  PubMed  Google Scholar 

  2. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401.

    Article  CAS  PubMed  Google Scholar 

  3. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    Article  CAS  PubMed  Google Scholar 

  4. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  CAS  PubMed  Google Scholar 

  5. Houghton, J., Stoicov, C., Nomura, S., Rogers, A. B., Carlson, J., Li, H., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306, 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  6. Fang, D., Nguyen, T. K., Leishear, K., Finko, R., Kulp, A. N., Hotz, S., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65, 9328–9337.

    Article  CAS  PubMed  Google Scholar 

  7. Welm, B., Behbod, F., Goodell, M. A., & Rosen, J. M. (2003). Isolation and characterization of functional mammary gland stem cells. Cell Proliferation, 36(Suppl 1), 17–32.

    Article  CAS  PubMed  Google Scholar 

  8. Boiani, M., & Scholer, H. R. (2005). Regulatory networks in embryo-derived pluripotent stem cells. Nature Reviews Molecular Cell Biology, 6, 872–884.

    Article  CAS  PubMed  Google Scholar 

  9. O’Farrell, P. H., Stumpff, J., & Su, T. T. (2004). Embryonic cleavage cycles: how is a mouse like a fly? Current Biology, 14, R35–R45.

    PubMed  Google Scholar 

  10. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., & Chuva de Sousa Lopes, S. M. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.

    Article  CAS  PubMed  Google Scholar 

  11. Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.

    Article  CAS  PubMed  Google Scholar 

  12. Ratajczak, M. Z., Machalinski, B., Wojakowski, W., Ratajczak, J., & Kucia, M. (2007). A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia, 21, 860–867.

    CAS  PubMed  Google Scholar 

  13. Ratajczak, M. Z., Zuba-Surma, E. K., Machalinski, B., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cells Review, 4, 89–99.

    Article  Google Scholar 

  14. Zuba-Surma, E. K., Kucia, M., Wu, W., Klich, I., Lillard, J. W., Jr., Ratajczak, J., et al. (2008). Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A, 73A, 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  15. Shin, D. M., Zuba-Surma, E. K., Wu, W., Ratajczak, J., Wysoczynski, M., Ratajczak, M. Z., et al. (2009). Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia, 23, 2042–2051.

  16. Beltrami, A. P., Cesselli, D., Bergamin, N., Marcon, P., Rigo, S., Puppato, E., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood, 110, 3438–3446.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  CAS  PubMed  Google Scholar 

  18. D’Ippolito, G., Diabira, S., Howard, G. A., Menei, P., Roos, B. A., & Schiller, P. C. (2004). Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Journal of Cell Science, 117, 2971–2981.

    Article  PubMed  CAS  Google Scholar 

  19. Pochampally, R. R., Smith, J. R., Ylostalo, J., & Prockop, D. J. (2004). Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood, 103, 1647–1652.

    Article  CAS  PubMed  Google Scholar 

  20. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, H., Fang, D., Kumar, S. M., Li, L., Nguyen, T. K., Acs, G., et al. (2006). Isolation of a novel population of multipotent adult stem cells from human hair follicles. American Journal of Pathology, 168, 1879–1888.

    Article  CAS  PubMed  Google Scholar 

  22. Jones, R. J., Wagner, J. E., Celano, P., Zicha, M. S., & Sharkis, S. J. (1990). Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature, 347, 188–189.

    Article  CAS  PubMed  Google Scholar 

  23. Donovan, P. J. (1998). The germ cell—the mother of all stem cells. International Journal of Developmental Biology, 42, 1043–1050.

    CAS  PubMed  Google Scholar 

  24. Zwaka, T. P., & Thomson, J. A. (2005). A germ cell origin of embryonic stem cells? Development, 132, 227–233.

    Article  CAS  PubMed  Google Scholar 

  25. McLaren, A. (2003). Primordial germ cells in the mouse. Developmental Biology, 262, 1–15.

    Article  CAS  PubMed  Google Scholar 

  26. McLaren, A. (1992). Development of primordial germ cells in the mouse. Andrologia, 24, 243–247.

    Article  CAS  PubMed  Google Scholar 

  27. Yamanaka, Y., Ralston, A., Stephenson, R. O., & Rossant, J. (2006). Cell and molecular regulation of the mouse blastocyst. Developmental Dynamics, 235, 2301–2314.

    Article  CAS  PubMed  Google Scholar 

  28. De Felici, M., & McLaren, A. (1983). In vitro culture of mouse primordial germ cells. Experimental Cell Research, 144, 417–427.

    Article  PubMed  Google Scholar 

  29. Yamazaki, Y., Mann, M. R., Lee, S. S., Marh, J., McCarrey, J. R., Yanagimachi, R., et al. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proceedings of the National Academy of Sciences of the United States of America, 100, 12207–12212.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., Kaneko-Ishino, T., et al. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129, 1807–1817.

    Article  CAS  PubMed  Google Scholar 

  31. Mann, J. R. (2001). Imprinting in the germ line. Stem Cells, 19, 287–294.

    Article  CAS  PubMed  Google Scholar 

  32. Lees-Murdock, D. J., & Walsh, C. P. (2008). DNA methylation reprogramming in the germ line. Epigenetics, 3, 5–13.

    Article  PubMed  Google Scholar 

  33. Delaval, K., & Feil, R. (2004). Epigenetic regulation of mammalian genomic imprinting. Current Opinion in Genetics and Development, 14, 188–195.

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, H., Ishihara, K., & Kato, R. (2000). Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation. Journal of Biochemistry, 127, 711–715.

    CAS  PubMed  Google Scholar 

  35. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425–432.

    Article  CAS  PubMed  Google Scholar 

  36. Surani, M. A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature, 414, 122–128.

    Article  CAS  PubMed  Google Scholar 

  37. Donovan, P. J. (1994). Growth factor regulation of mouse primordial germ cell development. Current Topics in Developmental Biology, 29, 189–225.

    Article  CAS  PubMed  Google Scholar 

  38. Matsui, Y., Zsebo, K., & Hogan, B. L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 70, 841–847.

    Article  CAS  PubMed  Google Scholar 

  39. Resnick, J. L., Ortiz, M., Keller, J. R., & Donovan, P. J. (1998). Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biology of Reproduction, 59, 1224–1229.

    Article  CAS  PubMed  Google Scholar 

  40. Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., et al. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 13726–13731.

    Article  CAS  PubMed  Google Scholar 

  41. Kono, T., Obata, Y., Wu, Q., Niwa, K., Ono, Y., Yamamoto, Y., et al. (2004). Birth of parthenogenetic mice that can develop to adulthood. Nature, 428, 860–864.

    Article  CAS  PubMed  Google Scholar 

  42. Kato, Y., Rideout, W. M., 3rd, Hilton, K., Barton, S. C., Tsunoda, Y., & Surani, M. A. (1999). Developmental potential of mouse primordial germ cells. Development, 126, 1823–1832.

    CAS  PubMed  Google Scholar 

  43. Durcova-Hills, G., & Surani, A. (2008). Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells. Curr Protoc Stem Cell Biol, Chapter 1:Unit1A 3

    Google Scholar 

  44. Kaneda, A., Wang, C. J., Cheong, R., Timp, W., Onyango, P., Wen, B., et al. (2007). Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk. Proceedings of the National Academy of Sciences of the United States of America, 104, 20926–20931.

    Article  CAS  PubMed  Google Scholar 

  45. Hartmann, W., Koch, A., Brune, H., Waha, A., Schuller, U., Dani, I., et al. (2005). Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. American Journal of Pathology, 166, 1153–1162.

    CAS  PubMed  Google Scholar 

  46. Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E., & Tycko, B. (1993). Tumour-suppressor activity of H19 RNA. Nature, 365, 764–767.

    Article  CAS  PubMed  Google Scholar 

  47. Pollak, M. (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nature Reviews Cancer, 8, 915–928.

    Article  CAS  PubMed  Google Scholar 

  48. Font de Mora, J., Esteban, L. M., Burks, D. J., Nunez, A., Garces, C., Garcia-Barrado, M. J., et al. (2003). Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. EMBO Journal, 22, 3039–3049.

    Article  CAS  PubMed  Google Scholar 

  49. Oosterhuis, J. W., & Looijenga, L. H. (2005). Testicular germ–cell tumours in a broader perspective. Nature Reviews Cancer, 5, 210–222.

    Article  CAS  PubMed  Google Scholar 

  50. Macchiarini, P., & Ostertag, H. (2004). Uncommon primary mediastinal tumours. Lancet Oncology, 5, 107–118.

    Article  PubMed  Google Scholar 

  51. Andrews, P. W., Matin, M. M., Bahrami, A. R., Damjanov, I., Gokhale, P., & Draper, J. S. (2005). Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochemical Society Transactions, 33, 1526–1530.

    Article  CAS  PubMed  Google Scholar 

  52. Sigalotti, L., Covre, A., Zabierowski, S., Himes, B., Colizzi, F., Natali, P. G., et al. (2008). Cancer testis antigens in human melanoma stem cells: expression, distribution, and methylation status. Journal of Cellular Physiology, 215, 287–291.

    Article  CAS  PubMed  Google Scholar 

  53. Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T., & Old, L. J. (2005). Cancer/testis antigens, gametogenesis and cancer. Nature Reviews Cancer, 5, 615–625.

    Article  CAS  PubMed  Google Scholar 

  54. Ratajczak, M. Z., Shin, D. M., & Kucia, M. (2009). Very small embryonic/epiblast-like stem cells: a missing link to support the germ line hypothesis of cancer development? American Journal of Pathology, 174, 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  55. Hotakainen, K., Ljungberg, B., Haglund, C., Nordling, S., Paju, A., & Stenman, U. H. (2003). Expression of the free beta-subunit of human chorionic gonadotropin in renal cell carcinoma: prognostic study on tissue and serum. International Journal of Cancer, 104, 631–635.

    Article  CAS  Google Scholar 

  56. Cheng, L. (2004). Establishing a germ cell origin for metastatic tumors using OCT4 immunohistochemistry. Cancer, 101, 2006–2010.

    Article  PubMed  Google Scholar 

  57. Barr, F. G. (1997). Molecular genetics and pathogenesis of rhabdomyosarcoma. Journal of Pediatric Hematology/Oncology, 19, 483–491.

    Article  CAS  PubMed  Google Scholar 

  58. Liu, C., Chen, Z., Chen, Z., Zhang, T., & Lu, Y. (2006). Multiple tumor types may originate from bone marrow-derived cells. Neoplasia, 8, 716–724.

    Article  CAS  PubMed  Google Scholar 

  59. Hernando, E. (2008). Cancer. Aneuploidy advantages? Science, 322, 692–693.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grants R01 CA106281-01 and R01 DK074720 and the Stella and Henry Hoenig Endowment to MZR NIH grant P20RR018733 from the National Center for Research Resources to MK and European Union structural funds, Innovative Economy Operational Program POIG. 01.01.02-00-109/09-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariusz Z. Ratajczak or Magda Kucia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M.Z., Shin, DM., Liu, R. et al. Epiblast/Germ Line Hypothesis of Cancer Development Revisited: Lesson from the Presence of Oct-4+ Cells in Adult Tissues. Stem Cell Rev and Rep 6, 307–316 (2010). https://doi.org/10.1007/s12015-010-9143-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9143-4

Keywords

Navigation