Skip to main content

Advertisement

Log in

APOA-1 is a Novel Marker of Erythroid Cell Maturation from Hematopoietic Stem Cells in Mice and Humans

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The mechanism that regulates the terminal maturation of hematopoietic stem cells into erythroid cells is poorly understood. Therefore, identifying genes and surface markers that are restricted to specific stages of erythroid maturation will further our understanding of erythropoiesis. To identify genes expressed at discrete stages of erythroid development, we screened for genes that contributed to the proliferation and maturation of erythropoietin (EPO)-dependent UT-7/EPO cells. After transducing erythroid cells with a human fetal liver (FL)-derived lentiviral cDNA library and culturing the cells in the absence of EPO, we identified 17 candidate genes that supported erythroid colony formation. In addition, the mouse homologues of these candidate genes were identified and their expression was examined in E12.5 erythroid populations by qRT-PCR. The expression of candidate erythroid marker was also assessed at the protein level by immunohistochemistry and ELISA. Our study demonstrated that expression of the Apoa-1 gene, an apolipoprotein family member, significantly increased as hematopoietic stem cells differentiated into mature erythroid cells in the mouse FL. The Apoa-1 protein was more abundant in mature erythroid cells than hematopoietic stem and progenitor cells in the mouse FL by ELISA. Moreover, APOA-1 gene expression was detected in mature erythroid cells from human peripheral blood. We conclude that APOA-1 is a novel marker of the terminal erythroid maturation of hematopoietic stem cells in both mice and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Weissman, I. L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100, 157–168.

    Article  CAS  PubMed  Google Scholar 

  2. Mikkola, H. K., & Orkin, S. H. (2006). The journey of developing hematopoietic stem cells. Development, 133, 3733–3744.

    Article  CAS  PubMed  Google Scholar 

  3. Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86, 897–906.

    Article  CAS  PubMed  Google Scholar 

  4. Sugiyama, D., & Tsuji, K. (2006). Definitive hematopoiesis from endothelial cells in the mouse embryo; a simple guide. Trends in Cardiovascular Medicine, 16, 45–49.

    Article  CAS  PubMed  Google Scholar 

  5. Ema, H., & Nakauchi, H. (2000). Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood, 95, 2284–2288.

    CAS  PubMed  Google Scholar 

  6. Palis, J. (2008). Ontogeny of erythropoiesis. Current Opinion in Hematology, 15, 155–161.

    Article  PubMed  Google Scholar 

  7. McGrath, K., & Palis, J. (2008). Ontogeny of erythropoiesis in the mammalian embryo. Current Topics in Developmental Biology, 82, 1–22.

    Article  CAS  PubMed  Google Scholar 

  8. Hiroyama, T., Miharada, K., Sudo, K., Danjo, I., Aoki, N., & Nakamura, Y. (2008). Establishment of mouse embryonic stem cell-derived erythroid progenitor cell lines able to produce functional red blood cells. PLos One, 3, e1544.

    Article  PubMed  Google Scholar 

  9. Kina, T., Ikuta, K., Takayama, E., et al. (2000). The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. British Journal Haematology, 109, 280–287.

    Article  CAS  Google Scholar 

  10. Zhang, J., Socolovsky, M., Gross, A. W., & Lodish, H. F. (2003). Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood, 102, 3938–3946.

    Article  CAS  PubMed  Google Scholar 

  11. Kurita, R., Sasaki, E., Yokoo, T., et al. (2006). Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells. Stem Cells, 24, 2014–2022.

    Article  CAS  PubMed  Google Scholar 

  12. Kurita, R., Oikawa, T., Okada, M., et al. (2008). Construction of a high-performance human fetal liver-derived lentiviral cDNA library. Molecular and Cellular Biochemistry, 319, 181–187.

    Article  CAS  PubMed  Google Scholar 

  13. Komatsu, N., Yamamoto, M., Fujita, H., et al. (1993). Establishment and characterization of an erythropoietin-dependent subline, UT-7/Epo, derived from human leukemia cell line, UT-7. Blood, 82, 456–464.

    CAS  PubMed  Google Scholar 

  14. Suzuki, N., Suwabe, N., Ohneda, O., et al. (2003). Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels. Blood, 102, 3575–3583.

    Article  CAS  PubMed  Google Scholar 

  15. Walkley, C. R., & Orkin, S. H. (2006). Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 9057–9062.

    Article  CAS  PubMed  Google Scholar 

  16. Dolznig, H., Habermann, B., Stangl, K., et al. (2002). Apoptosis protection by the Epo target Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Current Biology, 12, 1076–1085.

    Article  CAS  PubMed  Google Scholar 

  17. Gelvan, D., Fibach, E., Meyron-Holtz, E. G., & Konijn, A. M. (1996). Ferritin uptake by human erythroid precursors is a regulated iron uptake pathway. Blood, 88, 3200–3207.

    CAS  PubMed  Google Scholar 

  18. Meyron-Holtz, E. G., Vaisman, B., Cabantchik, Z. I., et al. (1999). Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritin. Blood, 94, 3205–3211.

    CAS  PubMed  Google Scholar 

  19. Holm, T. M., Braun, A., Trigatti, B. L., et al. (2002). Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood, 99, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  20. Breslow, J. L., Ross, D., McPherson, J., et al. (1982). Isolation and characterization of cDNA clones for human apolipoprotein A-I. Proceedings of the National Academy of Sciences of the United States of America, 79, 6861–6865.

    Article  CAS  PubMed  Google Scholar 

  21. Fitzgerald, M. L., Morris, A. L., Rhee, J. S., Andersson, L. P., Mendez, A. J., & Freeman, M. W. (2002). Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. Journal of Biological Chemistry, 277, 33178–33187.

    Article  CAS  PubMed  Google Scholar 

  22. Tang, C., Liu, Y., Kessler, P. S., Vaughan, A. M., & Oram, J. F. (2009). The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. Journal of Biological Chemistry, 47, 32336–32343.

    Article  Google Scholar 

  23. Richmond, T. D., Chohan, M., & Barber, D. L. (2005). Turning cells red: signal transduction mediated by erythropoietin. Trends in Cell Biology, 15, 146–155.

    Article  CAS  PubMed  Google Scholar 

  24. Zannis, V. I., Lees, A. M., Lees, R. S., & Breslow, J. L. (1982). Abnormal apoprotein A-I isoprotein composition in patients with Tangier disease. Journal of Biological Chemistry, 257, 4978–4986.

    CAS  PubMed  Google Scholar 

  25. Gordon, J. I., Sims, H. F., Lentz, S. R., Edelstein, C., Scanu, A. M., & Strauss, A. W. (1983). Proteolytic processing of human preproapolipoprotein A-I. A proposed defect in the conversion of pro A-I to A-I in Tangier’s disease. Journal of Biological Chemistry, 258, 4037–4044.

    CAS  PubMed  Google Scholar 

  26. Schmitz, G., Assmann, G., Rall, S. C., Jr., & Mahley, R. W. (1983). Tangier disease: defective recombination of a specific Tangier apolipoprotein A-I isoform (pro-apo A-i) with high density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 80, 6081–6085.

    Article  CAS  PubMed  Google Scholar 

  27. Reinhart, W. H., Gossi, U., Butikofer, P., et al. (1989). Haemolytic anaemia in analpha-lipoproteinaemia (Tangier disease): morphological, biochemical, and biophysical properties of the red blood cell. British Journal Haematology, 72, 272–277.

    Article  CAS  Google Scholar 

  28. Sasaki, J., Waterman, M. R., & Cottam, G. L. (1986). Decreased apolipoprotein A-I and B content in plasma of individuals with sickle cell anemia. Clinical Chemistry, 32, 226–227.

    CAS  PubMed  Google Scholar 

  29. Ginsberg, H. N., Le, N. A., & Gilbert, H. S. (1986). Altered high density lipoprotein metabolism in patients with myeloproliferative disorders and hypocholesterolemia. Metabolism, 35, 878–882.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chiyo Mizuochi, Yuka Horio, Tatsuya Sasaki and Michiko Ushijima at Kyushu University for excellent technical assistance. This work was supported by a grant from the Project for Realization of Regenerative Medicine from the Ministry of Education, Culture, Sports, Science and Technology and by a grant from the BASIS project from the Ministry of Education, Culture, Sports, Science and Technology. T. Inoue is supported by research fellowships from the Japan Society for the Promotion of Science for Young Scientists.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzaburo Tani.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

MTT assay of UT-7/EPO cells in the presence or the absence of EPO. We examined cell proliferation (O.D. 450 nm) at days 2, 4, 6 and 8. UT-7/EPO cells proliferated in the presence but not in the absence of EPO. (PPT 103 kb)

Supplemental Figure 2

(A) UT-7/EPO cells were cultured in the presence or absence of EPO for 3 days and then analyzed for the expression of surface markers CD71 (transferrin receptor) and GPA (glycophorin A). (B) UT-7/EPO cells were cultured in the presence or absence of EPO for 2 days and examined for fetal hemoglobin (gamma-globin) and adult hemoglobin (beta-globin). (PPT 776 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, T., Sugiyama, D., Kurita, R. et al. APOA-1 is a Novel Marker of Erythroid Cell Maturation from Hematopoietic Stem Cells in Mice and Humans. Stem Cell Rev and Rep 7, 43–52 (2011). https://doi.org/10.1007/s12015-010-9140-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9140-7

Keywords