Skip to main content
Log in

Convenient and Efficient Enrichment of the CD133+ Liver Cells from Rat Fetal Liver Cells as a Source of Liver Stem/Progenitor Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Although the stem cells are commonly isolated by FACS or MACS, they are very expensive and these is no specific marker for liver stem/progentior cells (LSPCs). This paper applied a convenient and efficient method to enrich LSPCs. The fetal liver cells (FLCs) were firstly enriched by Percoll discontinuous gradient centrifugation (PDGC) from the rat fetal liver. Then the FLCs in culture were purified to be homogeneous in size by differential trypsinization and differential adherence (DTDA). Flow cytometric analysis revealed more than half of the purified FLCs expressed alternative markers of LSPCs (CD117, c-Met, Sca-1, CD90, CD49f and CD133). In other words, the purified FLCs were heterogeneous. Therefore, they were sequentially layered into six fractions by Percoll continuous gradient centrifugation (PCGC). Both CD133 and CD49f expressed decreasingly from fraction 1 to 6. In fraction 1 and 2, about 85% FLCs expressed CD133, which were revealed to be LSPCs by high expressions of AFP and CK-19, low expressions of G-6-P and ALB. To conclude, the purity of CD133+ LSPCs enriched by combination of PDGC, DTDA and PCGC is close to that obtained by MACS. This study will greatly contribute to two important biological aspects: liver stem cells isolation and liver cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AFP:

alpha fetoprotein

ALB:

albumin

CK:

cytokine

DAB:

3,3′-diaminobenzidine

DTDA:

differential trypsinization and differential adherence

ED:

embryonic day

F1-6:

fraction 1-6

FACS:

fluorescence-activated cells sorting

FITC:

fluorescein isothiocyanate

GGT:

γ-glutamyltransferase

G-6-P:

glucose-6-phosphate

HRP:

horseradish peroxidase

MACS:

magnetic affinity cells sorting

PCGC:

Percoll continuous gradient centrifugation

PDGC:

Percoll discontinuous gradient centrifugation

RT-PCR:

reverse transcriptive polymerase chain reaction

References

  1. Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology 2006;130:507-20; quiz 90.

    Google Scholar 

  2. Oertel, M., Menthena, A., Chen, Y. Q., Teisner, B., Jensen, C. H., & Shafritz, D. A. (2008). Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology, 134, 823–32.

    CAS  PubMed  Google Scholar 

  3. Nierhoff, D., Levoci, L., Schulte, S., Goeser, T., Rogler, L. E., & Shafritz, D. A. (2007). New cell surface markers for murine fetal hepatic stem cells identified through high density complementary DNA microarrays. Hepatology, 46, 535–47.

    Article  CAS  PubMed  Google Scholar 

  4. Yu, S., Zhang, J. Z., Zhao, C. L., Zhang, H. Y., & Xu, Q. (2004). Isolation and characterization of the CD133+ precursors from the ventricular zone of human fetal brain by magnetic affinity cell sorting. Biotechnol Lett, 26, 1131–6.

    Article  CAS  PubMed  Google Scholar 

  5. Hao, H. N., Zhao, J., Thomas, R. L., Parker, G. C., & Lyman, W. D. (2003). Fetal human hematopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J Hematother Stem Cell Res, 12, 23–32.

    Article  CAS  PubMed  Google Scholar 

  6. Shmelkov, S. V., Meeus, S., Moussazadeh, N., et al. (2005). Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue. Circulation, 111, 1175–83.

    Article  CAS  PubMed  Google Scholar 

  7. Kordes, C., Sawitza, I., Muller-Marbach, A., et al. (2007). CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun, 352, 410–7.

    Article  CAS  PubMed  Google Scholar 

  8. Schmelzer, E., Zhang, L., Bruce, A., et al. (2007). Human hepatic stem cells from fetal and postnatal donors. J Exp Med, 204, 1973–87.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, Y. W., & Taniguchi, H. (2003). Diversity of hepatic stem cells in the fetal and adult liver. Semin Liver Dis, 23, 337–48.

    Article  CAS  PubMed  Google Scholar 

  10. Corcelle, V., Stieger, B., Gjinovci, A., Wollheim, C. B., & Gauthier, B. R. (2006). Characterization of two distinct liver progenitor cell subpopulations of hematopoietic and hepatic origins. Exp Cell Res, 312, 2826–36.

    Article  CAS  PubMed  Google Scholar 

  11. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132, 598–611.

    Article  CAS  PubMed  Google Scholar 

  12. Fujikawa, T., Hirose, T., Fujii, H., et al. (2003). Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting. J Hepatol, 39, 162–70.

    Article  CAS  PubMed  Google Scholar 

  13. Perez, C., Moreno, S., Summerfield, A., et al. (2007). Characterisation of porcine bone marrow progenitor cells identified by the anti-c-kit (CD117) monoclonal antibody 2B8/BM. J Immunol Methods, 321, 70–9.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Z. F., Ho, D. W., Ng, M. N., et al. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 13, 153–66.

    Article  CAS  PubMed  Google Scholar 

  15. Oshima, Y., Suzuki, A., Kawashimo, K., Ishikawa, M., Ohkohchi, N., & Taniguchi, H. (2007). Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology, 132, 720–32.

    Article  CAS  PubMed  Google Scholar 

  16. Suetsugu, A., Nagaki, M., Aoki, H., Motohashi, T., Kunisada, T., & Moriwaki, H. (2006). Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun, 351, 820–4.

    Article  CAS  PubMed  Google Scholar 

  17. Tsuchiya, A., Heike, T., Fujino, H., et al. (2005). Long-term extensive expansion of mouse hepatic stem/progenitor cells in a novel serum-free culture system. Gastroenterology, 128, 2089–104.

    Article  CAS  PubMed  Google Scholar 

  18. Yamazaki, S., Miki, K., Takayama, T., et al. (2006). Hepatic gene induction in murine bone marrow after hepatectomy. J Hepatol, 44, 325–33.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki, A., & Nakauchi, H. (2002). Identification and propagation of liver stem cells. Semin Cell Dev Biol, 13, 455–61.

    Article  PubMed  Google Scholar 

  20. Beaudry, P., Hida, Y., Udagawa, T., et al. (2007). Endothelial progenitor cells contribute to accelerated liver regeneration. J Pediatr Surg, 42, 1190–8.

    Article  PubMed  Google Scholar 

  21. Karbanova, J., Missol-Kolka, E., Fonseca, A. V., et al. (2008). The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem, 56, 977–93.

    Article  CAS  PubMed  Google Scholar 

  22. Tamaki, S., Eckert, K., He, D., et al. (2002). Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res, 69, 976–86.

    Article  CAS  PubMed  Google Scholar 

  23. Rao, M. S., Khan, A. A., Parveen, N., Habeeb, M. A., Habibullah, C. M., & Pande, G. (2008). Characterization of hepatic progenitors from human fetal liver during second trimester. World J Gastroenterol, 14, 5730–7.

    Article  PubMed  Google Scholar 

  24. Hoppo, T., Fujii, H., Hirose, T., et al. (2004). Thy1-positive mesenchymal cells promote the maturation of CD49f-positive hepatic progenitor cells in the mouse fetal liver. Hepatology, 39, 1362–70.

    Article  PubMed  Google Scholar 

  25. Koenig, S., Krause, P., Drabent, B., et al. (2006). The expression of mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in vitro. J Hepatol, 44, 1115–24.

    Article  CAS  PubMed  Google Scholar 

  26. Overturf, K., Al-Dhalimy, M., Finegold, M., & Grompe, M. (1999). The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am J Pathol, 155, 2135–43.

    CAS  PubMed  Google Scholar 

  27. Sandhu, J. S., Petkov, P. M., Dabeva, M. D., & Shafritz, D. A. (2001). Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol, 159, 1323–34.

    CAS  PubMed  Google Scholar 

  28. Rajvanshi, P., Kerr, A., Bhargava, K. K., Burk, R. D., & Gupta, S. (1996). Studies of liver repopulation using the dipeptidyl peptidase IV-deficient rat and other rodent recipients: cell size and structure relationships regulate capacity for increased transplanted hepatocyte mass in the liver lobule. Hepatology, 23, 482–96.

    Article  CAS  PubMed  Google Scholar 

  29. Nagai, H., Terada, K., Watanabe, G., et al. (2002). Differentiation of liver epithelial (stem-like) cells into hepatocytes induced by coculture with hepatic stellate cells. Biochem Biophys Res Commun, 293, 1420–5.

    Article  CAS  PubMed  Google Scholar 

  30. Alpini, G., Phillips, J. O., Vroman, B., & LaRusso, N. F. (1994). Recent advances in the isolation of liver cells. Hepatology, 20, 494–514.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (NO. 30772102). We thank Fu-qin Zhang (the fourth military medical university, China) for helping us a lot in experimental design. The department of immunology (the fourth military medical university, China) helped us to do flow cytometric analyzing. Sincere thanks also go to Chun Ge (Beijing Normal University, China) for writing supports.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-feng Dou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

The optimal condition for gradating FLCs by PCGC. The 50% Percoll was centrifuged at 20,000×g for (A) 30, (B) 60 and (C) 90 min in angle head rotor, separately; the 40% Percoll was also centrifuged at 20,000×g for (D) 60 and (E) 90 min, respectively. Finally, the 40% Percoll centrifuged for 90 min could form continuous gradient. (GIF 9 kb)

High Resolution

(TIFF 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Wh., Li, R. & Dou, Kf. Convenient and Efficient Enrichment of the CD133+ Liver Cells from Rat Fetal Liver Cells as a Source of Liver Stem/Progenitor Cells. Stem Cell Rev and Rep 7, 94–102 (2011). https://doi.org/10.1007/s12015-010-9119-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9119-4

Keywords

Navigation