Abstract
Biomechanical signals such as cell shape and spreading play an important role in controlling stem cell commitment. Cell shape, adhesion and spreading are also affected by calreticulin, a multifunctional calcium-binding protein, which influences several cellular processes, including adipogenesis. Here we show that cytoskeletal disruption in mouse embryonic stem cells using cytochalasin D or nocodazole promotes adipogenesis. While cytochalasin D disrupts stress fibres and inhibits focal adhesion formation, nocodazole depolymerises microtubules and promotes focal adhesion formation. Furthermore, cytochalasin D increases the levels of both total and activated calcium/calmodulin-dependent protein kinase II, whereas nocodazole decreases it. Nevertheless, both treatments significantly increase the adipogenic potential of embryonic stem cells in vitro. Both cytochalasin D and nocodazole exposure caused cell rounding suggesting that it is cell shape that causes the switch towards the adipogenic programme. Calreticulin-containing embryonic stem cells, under baseline conditions, show low adipogenic potential, have low activity of signalling via calcium/calmodulin-dependent protein kinase II and display normal adhesive properties and cellular spreading in comparison to the highly adipogenic but poorly spread calreticulin-deficient ES cells. We conclude that forced cell rounding via cytoskeletal disruption overrides the effects of calreticulin, an ER chaperone, thus negatively regulating adipogenesis via focal adhesion-mediated cell spreading.




Abbreviations
- C/EBP:
-
CCAAT-enhancer binding protein
- CaMKII:
-
Ca2+/calmodulin-dependent protein kinase II
- EB:
-
embryoid body
- EGTA:
-
ethylene glycol tetraacetic acid
- ER:
-
endoplasmic reticulum
- ES cells:
-
embryonic stem cells
- GAPDH:
-
glyceraldehde 3-phosphate dehydrogenase
- PBS:
-
Phosphate-buffered saline
- PIPES:
-
Piperazine-1,4-bis(2-ethanesulfonic acid)
- PPAR:
-
peroxisome proliferator activated receptor
- SDS PAGE:
-
sodium dodecyl sulfate polyacrylamide gel electrophoresis
- WT:
-
wild type
References
McDonald, J. A. (1989). Matrix regulation of cell shape and gene expression. Current Opinion in Cell Biology, 1, 995–999.
Ben-Ze’ev, A. (1991). Animal cell shape changes and gene expression. BioEssays, 13, 207–212.
Opas, M. (1994). Substratum mechanics and cell differentiation. International Review of Cytology, 150, 119–137.
Huang, S., & Ingber, D. E. (2000). Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research, 261, 91–103.
Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7, 265–275.
Wang, J. J., Thampatty, B. P., Lin, J. S., & Im, H. J. (2007). Mechanoregulation of gene expression in fibroblasts. Gene, 391, 1–15.
Zajac, A. L., & Discher, D. E. (2008). Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling. Current Opinion in Cell Biology, 20, 609–615.
Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.
Saha, K., Pollock, J. F., Schaffer, D. V., & Healy, K. E. (2007). Designing synthetic materials to control stem cell phenotype. Current Opinion in Chemical Biology, 11, 381–387.
Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6, 483–495.
Szabo, E., Feng, T., Dziak, E., & Opas, M. (2009). Cell adhesion and spreading affect adipogenesis from ES cells: the role of calreticulin. Stem Cells, 27, 2092–2102.
Rosen, E. D., Walkey, C. J., Puigserver, P., & Spiegelman, B. M. (2000). Transcriptional regulation of adipogenesis. Genes and Development, 14, 1293–1307.
Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., et al. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular Cell, 3, 151–158.
El-Jack, A. K., Hamm, J. K., Pilch, P. F., & Farmer, S. R. (1999). Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. Journal of Biological Chemistry, 274, 7946–7951.
Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 7, 885–896.
Szabo, E., Qiu, Y., Baksh, S., Michalak, M., & Opas, M. (2008). Calreticulin inhibits commitment to adipocyte differentiation. Journal of Cell Biology, 182, 103–116.
Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I., & Opas, M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochemical Journal, 417, 651–666.
Abdel-Ghany, M., el Gendy, K., Zhang, S., & Racker, E. (1990). Control of src kinase activity by activators, inhibitors, and substrate chaperones. Proceedings of the National Academy of Sciences of the United States of America, 87, 7061–7065.
Benaim, G., & Villalobo, A. (2002). Phosphorylation of calmodulin. Functional implications. European Journal of Biochemistry, 269, 3619–3631.
Wang, H., Goligorsky, M. S., & Malbon, C. C. (1997). Temporal activation of Ca2+-calmodulin-sensitive protein kinase type II is obligate for adipogenesis. Journal of Biological Chemistry, 272, 1817–1821.
Kennell, J. A., & MacDougald, O. A. (2005). Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. Journal of Biological Chemistry, 280, 24004–24010.
Spiegelman, B. M., & Ginty, C. A. (1983). Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell, 35, 657–666.
Rodriguez Fernández, J. L., & Ben-Ze’ev, A. (1989). Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: Inhibition by extracellular matrix and polylysine. Differentiation, 42, 65–74.
Mesaeli, N., Nakamura, K., Zvaritch, E., Dickie, P., Dziak, E., Krause, K. H., et al. (1999). Calreticulin is essential for cardiac development. Journal of Cell Biology, 144, 857–868.
Li, J., Puceat, M., Perez-Terzic, C., Mery, A., Nakamura, K., Michalak, M., et al. (2002). Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis. Journal of Cell Biology, 158, 103–113.
Kurosawa, H. (2007). Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering, 103, 389–398.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
Villagomez, M., Szabo, E., Podchenko, A., Feng, T., Papp, S., & Opas, M. (2009). Calreticulin and focal contact-dependent adhesion. Biochemistry and Cell Biology, 87, 545–556.
Domnina, L. V., Gelfand, V. I., Ivanova, O. Y., Leonova, E. V., Pletyushkina, O. Y., Vasiliev, J. M., et al. (1982). Effects of small doses of cytochalasins on fibroblasts: Preferential changes of active edges and focal contacts. Proceedings of the National Academy of Sciences of the United States of America, 79, 7754–7757.
Schliwa, M. (1982). Action of cytochalasin D on cytoskeletal networks. Journal of Cell Biology, 92, 79–91.
Papp, S., Fadel, M. P., Kim, H., McCulloch, C. A., & Opas, M. (2007). Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-src activity. Journal of Biological Chemistry, 282, 16585–16598.
Van’t Hof, W., & Van Meer, G. (1990). Generation of lipid polarity in intestinal epithelial (Caco- 2) cells: Sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. Journal of Cell Biology, 111, 977–986.
Papp, S., Szabo, E., Kim, H., McCulloch, C. A., & Opas, M. (2008). Kinase-dependent adhesion to fibronectin: regulation by calreticulin. Experimental Cell Research, 314, 1313–1326.
Papp, S., Dziak, E., & Opas, M. (2009). Embryonic stem cell derived cardiomyogenesis: a novel role for calreticulin as a regulator. Stem Cells, 27, 1507–1515.
Estes, B. T., Gimble, J. M., & Guilak, F. (2004). Mechanical signals as regulators of stem cell fate. Current Topics in Developmental Biology, 60, 91–126.
Kawaguchi, N., Sundberg, C., Kveiborg, M., Moghadaszadeh, B., Asmar, M., Dietrich, N., et al. (2003). ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. Journal of Cell Sciences, 116, 3893–3904.
Meyers, V. E., Zayzafoon, M., Douglas, J. T., & McDonald, J. M. (2005). RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. Journal of Bone and Mineral Research, 20, 1858–1866.
Noguchi, M., Hosoda, K., Fujikura, J., Fujimoto, M., Iwakura, H., Tomita, T., et al. (2007). Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis. Journal of Biological Chemistry, 282, 29574–29583.
Spiegelman, B. M., & Farmer, S. R. (1982). Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell, 29, 53–60.
Folkman, J., & Greenspan, H. P. (1975). Influence of geometry on control of cell growth. Biochimica et Biophysica Acta, 417, 211–236.
Folkman, J., & Moscona, A. A. (1978). Role of cell shape in growth control. Nature, 273, 345–349.
Bissell, M. J., Hall, H. G., & Parry, G. (1982). How does the extracellular matrix direct gene expression. Journal of Theoretical Biology, 99, 31–68.
Bissell, M. J., & Barcellos-Hoff, M. H. (1987). The influence of extracellular matrix on gene expression: is structure the message? Journal of Cell Science Supplement, 8, 327–343.
Ingber, D. E., Dike, L., Hansen, L., Karp, S., Liley, H., Maniotis, A., et al. (1994). Cellular Tensegrity: Exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. International Review of Cytology, 150, 173–224.
Huang, S., & Ingber, D. E. (2005). Cell tension, matrix mechanics, and cancer development. Cancer Cell, 8, 175–176.
Assoian, R. K., & Klein, E. A. (2008). Growth control by intracellular tension and extracellular stiffness. Trends in Cell Biology, 18, 347–352.
Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., et al. (1971). Microfilaments in cellular and developmental processes. Science, 171, 135–143.
Ivanova, O. Y., Margolis, L. B., & Vasiliev, J. M. (1976). Effect of colcemid on the spreading of fibroblasts in culture. Experimental Cell Research, 101, 207–219.
Ambrose, E. J. (1972). Cell shapes and cell contacts. Acta Protozoologica, 11, 9–22.
Vasiliev, J. M. (1987). Actin cortex and microtubular system in morphogenesis: cooperation and competition. Journal of Cell Science Supplement, 8, 1–18.
Ingber, D. E. (1993). Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of Cell Sciences, 104, 613–627.
Ingber, D. E. (1997). Tensegrity: the architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.
Burridge, K., & Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annual Review of Cell Developmental Biology, 12, 463–518.
Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology, 2, 793–805.
Goldmann, W. H. (2002). Mechanical aspects of cell shape regulation and signaling. Cell Biology International, 26, 313–317.
Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Sciences, 120, 3491–3499.
Katsumi, A., Orr, A. W., Tzima, E., & Schwartz, M. A. (2004). Integrins in mechanotransduction. Journal of Biological Chemistry, 279, 12001–12004.
Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Envrionmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 10, 21–33.
Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., & Discher, D. (2004). Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 86, 617–628.
Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143.
Solon, J., Levental, I., Sengupta, K., Georges, P. C., & Janmey, P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 93, 4453–4461.
Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., et al. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60, 24–34.
Levental, I., Georges, P. C., & Janmey, P. A. (2006). Soft biological materials and their impact on cell function. Soft Matter, 3, 299–306.
Teichert-Kuliszewska, K., Hamilton, B. S., Roncari, D. A., Kirkland, J. L., Gillon, W. S., Deitel, M., et al. (1996). Increasing vimentin expression associated with differentiation of human and rat preadipocytes. International Journal of Obesity and Related Metabolic Disorders, 20(Suppl 3), S108–S113.
Gloushankova, N. A., Lyubimova, A. V., Tint, I. S., Feder, H. H., Vasiliev, J. M., & Gelfand, I. M. (1994). Role of the microtubular system in morphological organization of normal and oncogene-transfected epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 91, 8597–8601.
Kadi, A., Pichard, V., Lehmann, M., Briand, C., Braguer, D., Marvaldi, J., et al. (1998). Effect of microtubule disruption on cell adhesion and spreading. Biochemical and Biophysical Research Communications, 246, 690–695.
Liu, B. P., Chrzanowska-Wodnicka, M., & Burridge, K. (1998). Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein rho. Cell Adhesion and Communication, 5, 249–255.
Pletjushkina, O. J., Belkin, A. M., Ivanova, O. J., Oliver, T., Vasiliev, J. M., & Jacobson, K. (1998). Maturation of cell-substratum focal adhesions induced by depolymerization of microtubules is mediated by increased cortical tension. Cell Adhesion and Communication, 5, 121–135.
Danowski, B. A. (1989). Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. Journal of Cell Sciences, 93, 255–266.
Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A., & Geiger, B. (1996). Involvement of microtubules in the control of adhesion-dependent signal transduction. Current Biology, 6, 1279–1289.
Kaverina, I., Krylyshkina, O., & Small, J. V. (2002). Regulation of substrate adhesion dynamics during cell motility. International Journal of Biochemistry and Cell Biology, 34, 746–761.
Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D., & Geiger, B. (2003). Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. Journal of Cell Sciences, 116, 975–986.
Zhang, Q., Magnusson, M. K., & Mosher, D. F. (1997). Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Molecular Biology of the Cell, 8, 1415–1425.
Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y., et al. (2005). Visualizing the mechanical activation of Src. Nature, 434, 1040–1045.
Head, B. P., Patel, H. H., Roth, D. M., Murray, F., Swaney, J. S., Niesman, I. R., et al. (2006). Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. Journal of Biological Chemistry, 281, 26391–26399.
Arnsdorf, E. J., Tummala, P., Kwon, R. Y., & Jacobs, C. R. (2009). Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. Journal of Cell Sciences, 122, 546–553.
Karl, I., & Bereiter-Hahn, J. (1998). Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy. Cell Biochemistry and Biophysics, 35, 76–82.
Szabo, E., Papp, S., & Opas, M. (2007). Differential calreticulin expression affects focal contacts via the calmodulin/Camk II pathway. Journal of Cellular Physiology, 213, 269–277.
Lin, Y. C., & Redmond, L. (2008). CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proceedings of the National Academy of Sciences of the United States of America, 105, 15791–15796.
Bouvard, D., Molla, A., & Block, M. R. (1998). Calcium/calmodulin-dependent protein kinase II controls α5β1 integrin-mediated inside-out signaling. Journal of Cell Sciences, 111, 657–665.
Bouvard, D., & Block, M. R. (1998). Calcium/calmodulin-dependent protein kinase II controls integrin α5β1-mediated cell adhesion through the integrin cytoplasmic domain associated protein-1alpha. Biochemical and Biophysical Research Communications, 252, 46–50.
Easley, C. A., Brown, C. M., Horwitz, A. F., & Tombes, R. M. (2008). CaMK-II promotes focal adhesion turnover and cell motility by inducing tyrosine dephosphorylation of FAK and paxillin. Cell Motility and the Cytoskeleton, 65, 662–674.
Liu, X., & Jefcoate, C. (2006). 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and epidermal growth factor cooperatively suppress peroxisome proliferator-activated receptor-gamma1 stimulation and restore focal adhesion complexes during adipogenesis: selective contributions of Src, Rho, and Erk distinguish these overlapping processes in C3H10T1/2 cells. Molecular Pharmacology, 70, 1902–1915.
Li, J. J., & Xie, D. (2007). Cleavage of focal adhesion kinase (FAK) is essential in adipocyte differentiation. Biochemical and Biophysical Research Communications, 357, 648–654.
Acknowledgments
We are grateful to Dr. Marek Michalak for his generosity with anti-calreticulin antibodies and to Dr. Sylvia Papp for critical reading of the manuscript. M.O. is a member of the Heart & Stroke/Richard Lewar Centre of Excellence. This work was supported by grants from CIHR (MPO-36384) and from the Heart and Stroke Foundation of Ontario (T 6181).
Disclaimer
There is no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
T. Feng: Collection and assembly of data, Data analysis and interpretation, Manuscript writing E. Szabo: Collection and assembly of data, Data analysis and interpretation E. Dziak: Collection of data M. Opas: Conception and design, Data analysis and interpretation, Manuscript writing and Final approval
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplemental Fig. 1
Cytochalasin D-treated cells contain an intact microtubule network. This composite shows three confocal sections taken through the top, middle and bottom of a cytochalasin D-treated WT ES cell clump. Intact microtubules can be detected in most of the cells, especially in the large cell endowed with a protrusion. Scale divisions: 10, 50 and 100 μm. (GIF 52 kb)
High Resolution
(TIFF 237 kb)
Rights and permissions
About this article
Cite this article
Feng, T., Szabo, E., Dziak, E. et al. Cytoskeletal Disassembly and Cell Rounding Promotes Adipogenesis from ES Cells. Stem Cell Rev and Rep 6, 74–85 (2010). https://doi.org/10.1007/s12015-010-9115-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12015-010-9115-8