Skip to main content
Log in

Endothelial and Hematopoietic Progenitor Cells (EPCs and HPCs): Hand in Hand Fate Determining Partners for Cancer Cells

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Tumor growth and metastasis need new vessel formation by angiogenesis provided by mature endothelial cells and postnatal vasculogenesis provided by endothelial progenitor cells (EPCs). Emerging data suggest a coordinated interaction between EPCs and hematopoietic progenitor cells (HPCs) in these processes. The complexity of the mechanisms governing the new vessel formation by postnatal vasculogenesis has increased by new evidence that not only bone marrow derived EPCs and HPCs seem to be involved in this process but also local progenitors residing within the vascular wall are mobilized and activated to new vessel formation by tumor cells. This review attempts to bring these systemic and local players of postnatal vasculogenesis together and to highlight their role in tumor growth and mestastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.

    Article  PubMed  CAS  Google Scholar 

  2. Detmar, M. (2000). Tumor angiogenesis. Journal of Investigative Dermatology Symposium Proceedings, 5, 20–23.

    Article  CAS  Google Scholar 

  3. Folkman, J., & D’Amore, P. A. (1996). Blood vessel formation: What is its molecular basis? [comment]. Cell, 87, 1153–1155.

    Article  PubMed  CAS  Google Scholar 

  4. Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29, 15–18.

    PubMed  CAS  Google Scholar 

  5. Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.

    Article  PubMed  CAS  Google Scholar 

  6. Jain, R. K. (2002). Tumor angiogenesis and accessibility: Role of vascular endothelial growth factor. Seminars in Oncology, 29, 3–9.

    PubMed  CAS  Google Scholar 

  7. McDonald, D. M., & Foss, A. J. (2000). Endothelial cells of tumor vessels: Abnormal but not absent. Cancer Metastasis Reviews, 19, 109–120.

    Article  PubMed  CAS  Google Scholar 

  8. Yancopoulos, G. D., Klagsbrun, M., & Folkman, J. (1998). Vasculogenesis, angiogenesis, and growth factors: Ephrins enter the fray at the border [comment]. Cell, 93, 661–664.

    Article  PubMed  CAS  Google Scholar 

  9. Risau, W. (1991). Embryonic angiogenesis factors. Pharmacology & Therapeutics, 51, 371–376.

    Article  CAS  Google Scholar 

  10. Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386, 671–674.

    Article  PubMed  CAS  Google Scholar 

  11. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der, Z. R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.

    Article  PubMed  CAS  Google Scholar 

  12. Asahara, T., & Isner, J. M. (2002). Endothelial progenitor cells for vascular regeneration. J. Hematother. Stem Cell Res, 11, 171–178.

    Article  PubMed  Google Scholar 

  13. Gehling, U. M., Ergun, S., Schumacher, U., Wagener, C., Pantel, K., Otte, M., et al. (2000). In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 95, 3106–3112.

    PubMed  CAS  Google Scholar 

  14. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92, 362–367.

    PubMed  CAS  Google Scholar 

  15. Vasa, M., Fichtlscherer, S., Adler, K., Aicher, A., Martin, H., Zeiher, A. M., et al. (2001). Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 103, 2885–2890.

    Article  PubMed  CAS  Google Scholar 

  16. Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: A source for postnatal vasculogenesis. Development, 133, 1543–1551.

    Article  PubMed  CAS  Google Scholar 

  17. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11, 69–82.

    Article  PubMed  CAS  Google Scholar 

  18. Ramirez-Castillejo, C., Sanchez-Sanchez, F., Ndreu-Agullo, C., Ferron, S. R., roca-Aguilar, J. D., Sanchez, P., et al. (2006). Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nature Neuroscience, 9, 331–339.

    Article  PubMed  CAS  Google Scholar 

  19. Shen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., et al. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  20. Heissig, B., Rafii, S., Akiyama, H., Ohki, Y., Sato, Y., Rafael, T., et al. (2005). Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. Journal of Experimental Medicine, 202, 739–750.

    Article  PubMed  CAS  Google Scholar 

  21. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    Article  PubMed  CAS  Google Scholar 

  22. Folkman, J. (2003). Angiogenesis and apoptosis. Seminars in Cancer Biology, 13, 159–167.

    Article  PubMed  CAS  Google Scholar 

  23. Alitalo, K., & Carmeliet, P. (2002). Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 1, 219–227.

    Article  PubMed  CAS  Google Scholar 

  24. Carmeliet, P. (2003). Angiogenesis in health and disease. Natural Medicines, 9, 653–660.

    Article  CAS  Google Scholar 

  25. Rafii, S., Lyden, D., Benezra, R., Hattori, K., & Heissig, B. (2002). Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Reviews. Cancer, 2, 826–835.

    Article  PubMed  CAS  Google Scholar 

  26. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.

    Article  PubMed  CAS  Google Scholar 

  27. Aicher, A., Rentsch, M., Sasaki, K., Ellwart, J. W., Fandrich, F., Siebert, R., et al. (2007). Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circulation Research, 100, 581–589.

    Article  PubMed  CAS  Google Scholar 

  28. Alessandri, G., Girelli, M., Taccagni, G., Colombo, A., Nicosia, R., Caruso, A., et al. (2001). Human vasculogenesis ex vivo: Embryonal aorta as a tool for isolation of endothelial cell progenitors. Laboratory Investigation, 81, 875–885.

    PubMed  CAS  Google Scholar 

  29. Bagley, R. G., Walter-Yohrling, J., Cao, X., Weber, W., Simons, B., Cook, B. P., et al. (2003). Endothelial precursor cells as a model of tumor endothelium: Characterization and comparison with mature endothelial cells. Cancer Research, 63, 5866–5873.

    PubMed  CAS  Google Scholar 

  30. Barber, C. L., & Iruela-Arispe, M. L. (2006). The ever-elusive endothelial progenitor cell: identities, functions and clinical implications. Pediatric Research, 59, 26R–32R.

    Article  PubMed  Google Scholar 

  31. Carmeliet, P., & Luttun, A. (2001). The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thrombosis and Haemostasis, 86, 289–297.

    PubMed  CAS  Google Scholar 

  32. Ergun, S., Tilki, D., Hohn, H. P., Gehling, U., & Kilic, N. (2007). Potential implications of vascular wall resident endothelial progenitor cells. Thrombosis and Haemostasis, 98, 930–939.

    PubMed  Google Scholar 

  33. Grenier, G., Scime, A., Le, G. F., Asakura, A., Perez-Iratxeta, C., Ndrade-Navarro, M. A., et al. (2007). Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells, 25, 3101–3110.

    Article  PubMed  CAS  Google Scholar 

  34. Heeschen, C., Aicher, A., Lehmann, R., Fichtlscherer, S., Vasa, M., Urbich, C., et al. (2003). Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood, 102, 1340–1346.

    Article  PubMed  CAS  Google Scholar 

  35. Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104, 2752–2760.

    Article  PubMed  CAS  Google Scholar 

  36. Jain, R. K., & Duda, D. G. (2003). Role of bone marrow-derived cells in tumor angiogenesis and treatment. Cancer Cell, 3, 515–516.

    Article  PubMed  CAS  Google Scholar 

  37. Rafii, S., Meeus, S., Dias, S., Hattori, K., Heissig, B., Shmelkov, S., et al. (2002). Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Seminars in Cell & Developmental Biology, 13, 61–67.

    Article  CAS  Google Scholar 

  38. Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105, 2783–2786.

    Article  PubMed  CAS  Google Scholar 

  39. Bruno, S., Bussolati, B., Grange, C., Collino, F., Graziano, M. E., Ferrando, U., et al. (2006). CD133+ renal progenitor cells contribute to tumor angiogenesis. American Journal of Pathology, 169, 2223–2235.

    Article  PubMed  CAS  Google Scholar 

  40. Kopp, H. G., Ramos, C. A., & Rafii, S. (2006). Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Current Opinion in Hematology, 13, 175–181.

    Article  PubMed  CAS  Google Scholar 

  41. Ruzinova, M. B., Schoer, R. A., Gerald, W., Egan, J. E., Pandolfi, P. P., Rafii, S., et al. (2003). Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 4, 277–289.

    Article  PubMed  CAS  Google Scholar 

  42. Spring, H., Schuler, T., Arnold, B., Hammerling, G. J., & Ganss, R. (2005). Chemokines direct endothelial progenitors into tumor neovessels. Proceedings of the National Academy of Sciences of the United States of America, 102, 18111–18116.

    Article  PubMed  CAS  Google Scholar 

  43. Gothert, J. R., Gustin, S. E., van Eekelen, J. A., Schmidt, U., Hall, M. A., Jane, S. M., et al. (2004). Genetically tagging endothelial cells in vivo: Bone marrow-derived cells do not contribute to tumor endothelium. Blood, 104, 1769–1777.

    Article  PubMed  Google Scholar 

  44. Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., & Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104, 2084–2086.

    Article  PubMed  CAS  Google Scholar 

  45. Gao, D., Nolan, D. J., Mellick, A. S., Bambino, K., McDonnell, K., & Mittal, V. (2008). Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science, 319, 195–198.

    Article  PubMed  CAS  Google Scholar 

  46. Invernici, G., Emanueli, C., Madeddu, P., Cristini, S., Gadau, S., Benetti, A., et al. (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. American Journal of Pathology, 170, 1879–1892.

    Article  PubMed  CAS  Google Scholar 

  47. Tavian, M., Zheng, B., Oberlin, E., Crisan, M., Sun, B., Huard, J., et al. (2005). The vascular wall as a source of stem cells. Annals of the New York Academy of Sciences, 1044, 41–50.

    Article  PubMed  Google Scholar 

  48. Attar, E. C., & Scadden, D. T. (2004). Regulation of hematopoietic stem cell growth. Leukemia, 18, 1760–1768.

    Article  PubMed  CAS  Google Scholar 

  49. Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nature Reviews. Cancer, 7, 733–736.

    Article  PubMed  CAS  Google Scholar 

  50. Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 425, 479–494.

    Article  PubMed  CAS  Google Scholar 

  51. Yin, T., & Li, L. (2006). The stem cell niches in bone. Journal of Clinical Investigation, 116, 1195–1201.

    Article  PubMed  CAS  Google Scholar 

  52. Sales, K. M., Winslet, M. C., & Seifalian, A. M. (2007). Stem cells and cancer: An overview. Stem Cell Rev, 3, 249–255.

    Article  PubMed  CAS  Google Scholar 

  53. Edelman, E. R., Nugent, M. A., Smith, L. T., & Karnovsky, M. J. (1992). Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. Journal of Clinical Investigation, 89, 465–473.

    Article  PubMed  CAS  Google Scholar 

  54. Kai, H., Kuwahara, F., Tokuda, K., Shibata, R., Kusaba, K., Niiyama, H., et al. (2002). Coexistence of hypercholesterolemia and hypertension impairs adventitial vascularization. Hypertension, 39, 455–459.

    Article  PubMed  CAS  Google Scholar 

  55. Langheinrich, A. C., Michniewicz, A., Sedding, D. G., Walker, G., Beighley, P. E., Rau, W. S., et al. (2006). Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(−/−)/low-density lipoprotein(−/−) double knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 347–352.

    Article  PubMed  CAS  Google Scholar 

  56. Langheinrich, A. C., Kampschulte, M., Buch, T., & Bohle, R. M. (2007). Vasa vasorum and atherosclerosis—Quid novi? Thrombosis and Haemostasis, 97, 873–879.

    PubMed  CAS  Google Scholar 

  57. Duda, D. G., Cohen, K. S., Scadden, D. T., & Jain, R. K. (2007). A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nature Protocols, 2, 805–810.

    Article  PubMed  CAS  Google Scholar 

  58. Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Reviews, 25, 521–529.

    PubMed  Google Scholar 

  59. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: the premetastatic niche. Cancer Research, 66, 11089–11093.

    Article  PubMed  CAS  Google Scholar 

  60. Rafii, S., & Lyden, D. (2008). Cancer. A few to flip the angiogenic switch. Science, 319, 163–164.

    Article  PubMed  CAS  Google Scholar 

  61. Balestrieri, M. L., & Napoli, C. (2007). Novel challenges in exploring peptide ligands and corresponding tissue-specific endothelial receptors. European Journal of Cancer, 43, 1242–1250.

    Article  PubMed  CAS  Google Scholar 

  62. Ribatti, D., Nico, B., Vacca, A., Roncali, L., & Dammacco, F. (2002). Endothelial cell heterogeneity and organ specificity. J. Hematother. Stem Cell Res, 11, 81–90.

    Article  PubMed  Google Scholar 

  63. Ribatti, D., Nico, B., Crivellato, E., & Vacca, A. (2007). The structure of the vascular network of tumors. Cancer Letter, 248, 18–23.

    Article  CAS  Google Scholar 

  64. Traktuev, D., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2007). A Population of Multipotent CD34-Positive Adipose Stromal Cells Share Pericyte and Mesenchymal Surface Markers, Reside in a Periendothelial Location, and Stabilize Endothelial Networks. Circulation research.

  65. Bot, I., de Jager, S. C., Zernecke, A., Lindstedt, K. A., van Berkel, T. J., Weber, C., et al. (2007). Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation, 115, 2516–2525.

    Article  PubMed  CAS  Google Scholar 

  66. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank F. Chalajour, E. Zengin and U. Gehling for their advice and scientific support in preparing of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Ergün.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ergün, S., Hohn, HP., Kilic, N. et al. Endothelial and Hematopoietic Progenitor Cells (EPCs and HPCs): Hand in Hand Fate Determining Partners for Cancer Cells. Stem Cell Rev 4, 169–177 (2008). https://doi.org/10.1007/s12015-008-9028-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9028-y

Keywords