Abstract
The breast epithelium comprises cells at different stages of differentiation, including stem cells, progenitor cells, and more differentiated epithelial and myoepithelial cells. Wnt signaling plays a critical role in regulating stem/progenitor cells in the mammary gland as well as other tissue compartments. Furthermore, there is strong evidence suggesting that aberrant activation of Wnt signaling induces mammary tumors from stem/progenitor cells, and that Wnt exerts its oncogenic effects through LRP5/6-mediated activation of β-catenin and mTOR pathways. Recent studies using avian retrovirus-mediated introduction of oncogenes into a small subset of somatic mammary cells suggest that polyoma middle T antigen (PyMT) may also preferentially transform stem/progenitor cells. These observations suggest that stem/progenitor cells in the mammary gland may be especially susceptible to oncogenic transformation. Whether more differentiated cells may also be transformed by particular oncogenes is actively debated; it is presently unclear whether stem cells or differentiated mammary cells are more susceptible to transformation by individual oncogenes. Better stem cell and progenitor cell markers as well as the ability to specifically target oncogenes into different mammary cell types will be needed to determine the spectrum of oncogene transformation for stem cells versus more differentiated cells.



Similar content being viewed by others
Abbreviations
- LRP:
-
low-density lipoprotein receptor-related protein
- mTOR:
-
mammalian target of rapamycin
- FRP:
-
Frizzled-related protein
- tva:
-
tumor virus A
- MMTV:
-
mouse mammary tumor virus
- WAP:
-
whey acidic protein
- PyMT:
-
polyoma middle T antigen
- SMA:
-
smooth muscle actin
- RCASBP(A)/RCAS:
-
replication-competent, ALV-LTR, splice acceptor, Bryan-RSV pol, subgroup A
References
Wiseman, B. S., & Werb, Z. (2002). Stromal effects on mammary gland development and breast cancer. Science, 296(5570), 1046–1049.
Hennighausen, L., & Robinson, G. W. (2005). Information networks in the mammary gland. Nature Reviews Molecular Cell Biology, 6(9), 715–725.
Veltmaat, J. M., Mailleux, A. A., Thiery, J. P., & Bellusci, S. (2003). Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation, 71(1), 1–17.
DeOme, K. B., Faulkin, L. J., Jr., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.
Daniel, C. W., De Ome, K. B., Young, J. T., Blair, P. B., Faulkin, L. J., Jr. (1968). The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 53–60.
Smith, G. H., & Medina, D. (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. Journal of Cell Science, 90(Pt 1), 173–183.
Kordon, E. C., & Smith, G. H. (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development, 125(10), 1921–1930.
Smith, G. H. (1996). Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 39(1), 21–31.
Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079), 993–997.
Lindvall, C., Evans, N. C., Zylstra, C. R., Li, Y., Alexander, C. M., & Williams, B. O. (2006). The WNT signaling receptor, LRP5, is required for mammary ductal stem cell activity and WNT1-induced tumorigenesis. Journal of Biological Chemistry, 281, 35081–35087.
Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072), 84–88.
Smalley, M., & Ashworth, A. (2003). Stem cells and breast cancer: A field in transit. Nature Reviews Cancer, 3(11), 832–844.
Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: Transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.
Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M., & Smalley, M. J. (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 8(1), R7.
Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245(1), 42–56.
Li, Y., & Rosen, J. M. (2005). Stem/progenitor cells in mouse mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 10(1), 17–24.
Welm, A. L., Kim, S., Welm, B. E., & Bishop, J. M. (2005). MET and MYC cooperate in mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4324–4329.
Grimm, S. L, Seagroves, T. N., Kabotyanski, E. B., Hovey, R. C., Vonderhaar, B. K., Lydon, P., et al. (2002). Disruption of steroid and prolactin receptor patterning in the mamamry gland correlates with a block in lobuloalveolar development. Molecular Endocrinology, 16(12), 2675–2691.
Sotgia, F., Williams, T. M., Cohen, A. W., Minetti, C., Pestell, R. G., & Lisanti, M. P. (2005). Caveolin-1-deficient mice have an increased mammary stem cell population with upregulation of Wnt/beta-catenin signaling. Cell Cycle, 4(12), 1808–1816.
Robinson, G. W., McKnight, R. A., Smith, G. H., & Hennighausen, L. (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development, 121(7), 2079–2090.
Woodward, W. A., Chen, M. S., Behbod, F., & Rosen, J. M. (2005). On mammary stem cells. Journal of Cell Science, 118(Pt 16), 3585–3594.
Liu, S., Dontu, G., Wicha, M. S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 7(3), 86–95.
Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 3(12), 895–902.
Valk-Lingbeek, M. E., Bruggeman, S. W., & van Lohuizen, M. (2004). Stem cells and cancer; the polycomb connection. Cell, 118(4), 409–418.
Eaton, S. (2006). Release and trafficking of lipid-linked morphogens. Current Opinion in Genetics & Development, 16(1), 17–22.
Bejsovec, A. (2005). Wnt pathway activation: New relations and locations. Cell, 120(1), 11–14.
Willert, K., & Jones, K. A. (2006). Wnt signaling: Is the party in the nucleus? Genes & Development, 20(11), 1394–1404.
Gordon, M. D., & Nusse, R. (2006). Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. Journal of Biological Chemistry, 281(32), 22429–22433.
Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469–480.
Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L., & Moon, R. T. (1995). Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Molecular and Cellular Biology, 15(5), 2625–2634.
Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., & Kitajewski, J. (1997). Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth & Differentiation, 8(12), 1349–1358.
Wong, G. T., Gavin, B. J., & McMahon, A. P. (1994). Differential transformation of mammary epithelial cells by Wnt genes. Molecular and Cellular Biochemistry, 14(9), 6278–6286.
Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., et al. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438(7069), 873–877.
Davidson, G., Wu, W., Shen, J., Bilic, J., Fenger, U., Stannek, P., et al. (2005). Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature, 438(7069), 867–872.
Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., et al. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955–968.
Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124(3), 471–484.
Veeman, M. T., Axelrod, J. D., Moon, R. T. (2003). A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Developmental Cell, 5(3), 367–377.
Meneghini, M. D., Ishitani, T., Carter, J. C., Hisamoto, N., Ninomiya-Tsuji, J., Thorpe, C. J., et al. (1999). MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature, 399(6738), 793–797.
Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., et al. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 399(6738), 798–802.
Smit, L., Baas, A., Kuipers, J., Korswagen, H., van de Wetering, M., & Clevers, H. (2004). Wnt activates the Tak1/Nemo-like kinase pathway. Journal of Biological Chemistry, 279(17), 17232–17240.
Chen, A. E., Ginty, D. D., Fan, C. M. (2005). Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature, 433(7023), 317–322.
Semenov, M. V., Tamai, K., Brott, B. K., Kuhl, M., Sokol, S., & He, X. (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Current Biology, 11(12), 951–961.
He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development, 131(8), 1663–1677.
Wehrli, M., Dougan, S. T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel-Ohayon, D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407(6803), 527–530.
Inoue, T., Oz, H. S., Wiland, D., Gharib, S., Deshpande, R., Hill, R. J., et al. (2004). C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell, 118(6), 795–806.
Lu, W., Yamamoto, V., Ortega, B., & Baltimore, D. (2004). Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell, 119(1), 97–108.
Yoshikawa, S., McKinnon, R. D., Kokel, M., & Thomas, J. B. (2003). Wnt-mediated axon guidance via the Drosophila derailed receptor. Nature, 422(6932), 583–588.
Mikels, A. J., & Nusse, R. (2006). Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biology, 4(4), e115.
Oishi, I., Suzuki, H., Onishi, N., Takada, R., Kani, S., Ohkawara, B., et al. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to Cells, 8(7), 645–654.
Teo, R., Mohrlen, F., Plickert, G., Muller, W. A., & Frank, U. (2006). An evolutionary conserved role of Wnt signaling in stem cell fate decision. Developments in Biologicals, 289(1), 91–99.
Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C. M., von Laue, C. C., Snyder, P., et al. (2000). WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature, 407(6801), 186–189.
Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.
Huelsken, J., & Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Current Opinion in Genetics & Development, 11(5), 547–553.
Kleber, M., & Sommer, L. (2004). Wnt signaling and the regulation of stem cell function. Current Opinion in Cell Biology, 16(6), 681–687.
Nguyen, H., Rendl, M., & Fuchs, E. (2006). Tcf3 governs stem cell features and represses cell fate determination in skin. Cell, 127(1), 171–183.
Polesskaya, A., Seale, P., & Rudnicki, M. A. (2003). Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell, 113(7), 841–852.
Miyoshi, K., Shillingford, J. M., Le Provost, F., Gounari, F., Bronson, R., von Boehmer, H., et al. (2002). Activation of beta-catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proceedings of the National Academy of Sciences of the United States of America, 99(1), 219–224.
Miyoshi, K., Rosner, A., Nozawa, M., Byrd, C., Morgan, F., Landesman-Bollag, E., et al. (2002). Activation of different Wnt/beta-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogenes, 21(36), 5548–5556.
Sansom, O. J., Reed, K. R., Hayes, A. J., Ireland, H., Brinkmann, H., Newton, I. P., et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & Development, 18(12), 1385–1390.
Radtke, F., & Clevers, H. (2005). Self-renewal and cancer of the gut: Two sides of a coin. Science, 307(5717), 1904–1909.
Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.
Pinto, D., Gregorieff, A., Begthel, H., Clevers, H. (2003). Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes & Development, 17(14), 1709–1713.
Kuhnert, F., Davis, C. R., Wang, H. T., Chu, P., Lee, M., Yuan, J., et al. (2004). Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 266–271.
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105(4), 533–545.
Chu, E. Y., Hens, J., Andl, T., Kairo, A., Yamaguchi, T. P., Brisken, C., et al. (2004). Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development, 131(19), 4819–4829.
Boras-Granic, K., Chang, H., Grosschedl, R., Hamel, P. A. (2006). Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Developments in Biologicals, 295, 219–231.
van Genderen, C., Okamura, R. M., Farinas, I., Quo, R. G., Parslow, T. G., Bruhn, L., et al. (1994). Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice. Genes & Development, 8(22), 2691–2703.
Liu, G., Bafico, A., & Aaronson, S. A. (2005). The mechanism of endogenous receptor activation functionally distinguishes prototype canonical and noncanonical Wnts. Molecular and Cellular Biology, 25(9), 3475–3482.
Andl, T., Reddy, S. T., Gaddapara, T., & Millar, S. E. (2002). WNT signals are required for the initiation of hair follicle development. Developmental Cell, 2(5), 643–653.
Weber-Hall, S. J., Phippard, D. J., Niemeyer, C. C., & Dale, T. C. (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation, 57(3), 205–214.
Brisken, C., Heineman, A., Chavarria, T., Elenbaas, B., Tan, J., Dey, S. K., et al. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes & Development, 14(6), 650–654.
Teperam, S. B., McCrea, P. D., & Rosen, J. M. (2003). A beta-catenin survival signal is required for normal lobular development in the mammary gland. Journal of Cell Science, 116(Pt 6), 1137–1149.
Hsu, W., Shakya, R., & Costantini, F. (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. Journal of Cell Biology, 155(6), 1055–1064.
Nusse, R. (2005). Wnt signaling in disease and in development. Cell Research, 15(1), 28–32.
Kinzler, K. W., & Vogelstein B. (1996). Lessons from hereditary colorectal cancer. Cell, 87(2), 159–170.
Polakis, P. (2000). Wnt signaling and cancer. Genes & Development, 14(15), 1837–1851.
Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., et al. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genetics, 24(3), 245–250.
Breuhahn, K., Longerich, T., & Schirmacher, P. (2006). Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogenes, 25(27), 3787–3800.
Liu, W., Dong, X., Mai, M., Seelan, R. S., Taniguchi, K., Krishnadath, K. K., et al. (2000). Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nature Genetics, 26(2), 146–147.
Jin, L. H., Shao, Q. J., Luo, W., Ye, Z. Y., Li, Q., & Lin, S. C. (2003). Detection of point mutations of the Axin1 gene in colorectal cancers. International Journal of Cancer, 107(5), 696–699.
Brennan, K. R., Brown, A. M. (2004). Wnt proteins in mammary development and cancer. Journal of Mammary Gland Biology and Neoplasia, 9(2), 119–131.
Bui, T. D., Rankin, J., Smith, K., Huguet, E. L., Ruben, S., Strachan, T., et al. (1997). A novel human Wnt gene, WNT10B, maps to 12q13 and is expressed in human breast carcinomas. Oncogenes, 14(10), 1249–1253.
Bafico, A., Liu, G., Goldin, L., Harris, V., & Aaronson, S. A. (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cells, 6(5), 497–506.
Milovanovic, T., Planutis, K., Nguyen, A., Marsh, J. L., Lin, F., Hope, C., et al. (2004). Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. International Journal of Oncology, 25(5), 1337–1342.
Ayyanan, A., Civenni, G., Ciarloni, L., Morel, C., Mueller, N., Lefort, K., et al. (2006). Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3799–3804.
Ugolini, F., Charafe-Jauffret, E., Bardou, V. J., Geneix, J., Adelaide, J., Labat-Moleur, F., et al. (2001). WNT pathway and mammary carcinogenesis: Loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogenes, 20(41), 5810–5817.
Klopocki, E., Kristiansen, G., Wild, P. J., Klaman, I., Castanos-Velez, E., Singer, G., et al. (2004). Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. International Journal of Oncology, 25(3), 641–649.
Veeck, J., Niederacher, D., An, H., Klopocki, E., Wiesmann, F., Betz, B., et al. (2006). Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogenes, 25(24), 3479–3488.
Ugolini, F., Adelaide, J., Charafe-Jauffret, E., Nguyen, C., Jacquemier, J., Jordan, B., et al. (1999). Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and fibroblast growth factor receptor 1 (FGFR1) as candidate breast cancer genes. Oncogenes, 18(10), 1903–1910.
Lo, P. K., Mehrotra, J., D’Costa, A., Fackler, M. J., Garrett-Mayer, E., Argani, P., et al. (2006). Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biology & Therapy, 5(3), 281–286.
Armes, J. E., Hammet, F., de Silva, M., Ciciulla, J., Ramus, S. J., Soo, W. K., et al. (2004). Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogenes, 23(33), 5697–5702.
Wong, S. C., Lo, S. F., Lee, K. C., Yam, J. W., Chan, J. K., Wendy Hsiao, W. L. (2002). Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. Journal of Pathology, 196(2), 145–153.
Zhou, Z., Wang, J., Han, X., Zhou, J., Linder, S. (1998). Up-regulation of human secreted frizzled homolog in apoptosis and its down-regulation in breast tumors. International Journal of Cancer, 78(1), 95–99.
Nagahata, T., Shimada, T., Harada, A., Nagai, H., Onda, M., Yokoyama, S., et al. (2003). Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Science, 94(6), 515–518.
Lin, S. Y., Xia, W., Wang, J. C., Kwong, K. Y., Spohn, B., Wen, Y., et al. (2000). Beta-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4262–4266.
Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C., & Lu, K. P. (2001). Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nature Cell Biology, 3(9), 793–801.
Nakopoulou, L., Mylona, E., Papadaki, I., Kavantzas, N., Giannopoulou, I., Markaki, S., et al. (2006). Study of phospho-beta-catenin subcellular distribution in invasive breast carcinomas in relation to their phenotype and the clinical outcome. Modern Pathology, 19(4), 556–563.
Dolled-Filhart, M., McCabe, A., Giltnane, J., Cregger, M., Camp, R. L., & Rimm, D. L. (2006). Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Research, 66(10), 5487–5494.
Gillett, C. E., Miles, D. W., Ryder, K., Skilton, D., Liebman, R. D., Springall, R. J., et al. (2001). Retention of the expression of E-cadherin and catenins is associated with shorter survival in grade III ductal carcinoma of the breast. Journal of Pathology, 93(4), 433–441.
Li, Y., & Hively, W. P. (2000). Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogenes, 19(8), 1002–1009.
Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T., & Varmus. H. E. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55(4), 619–625.
Lane, T. F., & Leder, P. (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogenes, 15(18), 2133–2144.
Gunther, E. J., Moody, S. E., Belka, G. K., Hahn, K. T., Innocent, N., Dugan, K. D., et al. (2003). Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes & Development, 17(4), 488–501.
Gestl, S. A., Leonard, T. L., Biddle, J. L., Debies, M. T., & Gunther, E. J. (2006). Dormant Wnt-initiated mammary cancer can participate in reconstituting functional mammary glands. Molecular and Cellular Biology, 27(1), 195–207.
Cunha, G. R., & Hom, Y. K. (1996). Role of mesenchymal–epithelial interactions in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 1(1), 21–37.
Imbert, A., Eelkema, R., Jordan, S., Feiner, H., & Cowin, P. (2001). Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. Journal of Cell Biology, 153(3), 555–568.
Michaelson, J. S., & Leder, P. (2001). beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogenes, 20(37), 5093–5099.
Teuliere, J., Faraldo, M. M., Deugnier, M. A., Shtutman, M., Ben-Ze’ev, A., Thiery, J. P., et al. (2005). Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development, 132(2), 267–277.
Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., et al. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15853–15858.
Liu, B. Y., McDermott, S. P., Khwaja, S. S., & Alexander, C. M. (2004). The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4158–4163.
Owens, D. M., & Watt, F. M. (2003). Contribution of stem cells and differentiated cells to epidermal tumours. Nature Reviews Cancer, 3(6), 444–451.
Dai, C., Celestino, J. C., Okada, Y., Louis, D. N., Fuller, G. N., & Holland, E. C. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes & Development, 15(15), 1913–1925.
Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cells, 1(3), 269–277.
Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351(7), 657–667.
Rosner, A., Miyoshi, K., Landesman-Bollag, E., Xu, X., Seldin, D. C., Moser, A. R., et al. (2002). Pathway pathology: Histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. American Journal of Pathology, 161(3), 1087–1097.
Cui, X. S., & Donehower, L. A. (2000). Differential gene expression in mouse mammary adenocarcinomas in the presence and absence of wild type p53. Oncogenes, 19(52), 5988–5996.
Houghton, J., Stoicov, C., Nomura, S., Rogers, A. B., Carlson, J., Li, H., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306(5701), 1568–1571.
Henry, M. D., Triplett, A. A., & Oh, K. B. (2004). Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogenes, 23(41), 6980–6985.
Morrison, B. W., & Leder, P. (1994). Neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors. Oncogenes, 9(12), 3417–3426.
Huang, S., Li, Y., Chen, Y., Podsypanina, K., Chamorro, M., Olshen, A. B., et al. (2005). Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice. Genome Biology, 6(10), R84.
Lewis, B. C., Klimstra, D. S., & Varmus, H. E. (2003). The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes & Development, 17(24), 3127–3138.
Podsypanina, K., & Li, Y. (2004). Varmus H. Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype. BMC Medicine, 2, 24.
Huang, S., Podsypanina, K., Chen, Y., Cai, W., Tsimelzon, A., Hilsenbeck, S., et al. (2006). Wnt-1 is dominant over Neu in specifying mammary tumor expression profiles. Technology in Cancer Research & Treatment, 5(6), 565–571.
Wagner, K. U., McAllister, K., Ward, T., Davis, B., Wiseman, R., & Hennighausen, L. (2001). Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Research, 10(6), 545–553.
Du, Z., Podsypanina, K., Huang, H., McGrath, A., Toneff, M. J., Bogoslovskaia, E., et al. (2006). Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17396–17401.
Gunther, E. J., Belka, G. K., Wertheim, G. B., Wang, J., Hartman, J. L., Boxer, R. B., et al. (2002). A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB Journal, 16(3), 283–292.
Politi, K., Kljuic, A., Szabolcs, M., Fisher, P., Ludwig, T., & Efstratiadis, A. (2004). ‘Designer’ tumors in mice. Oncogenes, 23(8), 1558–1565.
Holland, E. C., & Varmus, H. E. (1998). Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1218–1223.
Holland, E. C., Hively, W. P., DePinho, R. A., & Varmus, H. E. (1998). A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes & Development, 12(23), 3675–3685.
Orsulic, S., Li, Y., Soslow, R. A., Vitale-Cross, L. A., Gutkind, J. S., & Varmus, H. E. (2002). Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cells, 1, 53–62.
Montaner, S., Sodhi, A., Molinolo, A., Bugge, T. H., Sawai, E. T., He, Y., et al. (2003). Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cells, 3(1), 23–36.
Lewis, B. C., Klimstra, D. S., Socci, N. D., Xu, S., Koutcher, J. A., & Varmus, H. E. (2005). The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Molecular and Cellular Biology, 25(4), 1228–1237.
Pao, W., Klimstra, D. S., Fisher, G. H., & Varmus, H. E. (2003). Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8764–8769.
Fu, S. L., Huang, Y. J., Liang, F. P., Huang, Y. F., Chuang, C. F., Wang, S. W., et al. (2005). Malignant transformation of an epithelial cell by v-Src via tv-a-mediated retroviral infection: A new cell model for studying carcinogenesis. Biochemical and Biophysical Research Communications, 338(2), 830–838.
Federspiel, M. J., Bates, P., Young, J. A., Varmus, H. E., & Hughes, S. H. (1994). A system for tissue-specific gene targeting: Transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 11241–11245.
Fisher, G. H., Orsulic, S., Holland, E., Hively, W. P., Li, Y., Lewis, B. C., et al. (1999). Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogenes, 18(38), 5253–5260.
Orsulic, S. (2002). An RCAS-TVA-based approach to designer mouse models. Mammalian Genome, 13(10), 543–547.
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.
Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304(5675), 1331–1334.
Wicha, M. S., Liu, S., Dontu, G. (2006). Cancer stem cells: An old idea—a paradigm shift. Cancer Research, 66(4), 1883–1890.
Rudland, P. S. (1993). Epithelial stem cells and their possible role in the development of the normal and diseased human breast. Histology and Histopathology, 8(2), 385–404.
Shulewitz, M., Soloviev, I., Wu, T., Koeppen, H., Polakis, P., & Sakanaka, C. (2006). Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene, 25, 4361–4369.
Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39–49.
Acknowledgments
We thank Dr. Gary Chamness and David Nadziejka for the assistance in the preparation of this manuscript. This work was supported in part by funds from the National Institutes of Health R01 CA113869 (to YL) and Project 5 of MMHCC U01 CA084243-07 (to YL; U01 PI: Dr. Jeffrey Rosen), from the USAMRMC BC030755 (to YL), and from the Van Andel Research Institute (BOW).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lindvall, C., Bu, W., Williams, B.O. et al. Wnt Signaling, Stem Cells, and the Cellular Origin of Breast Cancer. Stem Cell Rev 3, 157–168 (2007). https://doi.org/10.1007/s12015-007-0025-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12015-007-0025-3