Skip to main content

Advertisement

Log in

Exploiting the Convergence of Embryonic and Tumorigenic Signaling Pathways to Develop New Therapeutic Targets

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

As our understanding of embryonic stem cell biology becomes more sophisticated, the similarities between multipotent cancer cells and these totipotent precursors are increasingly striking. Both multipotent cancer cells and embryonic stem cells possess the ability to self-renew, epigenetically alter their neighboring cellular architecture, and populate a tissue mass with a phenotypically heterogeneous composition of cells. While the molecular signature of these cell types continues to be elucidated, new insights are emerging related to the convergence of embryonic and tumorigenic signaling pathways. Understanding the molecular underpinnings of these two stem cell phenotypes may lead to new therapeutic targets for the elusive cancer cell. While still in its infancy, the potential of adapting embryonic stem cells, and more specifically the factors they produce, is enormous for clinical application. Here we outline evidence that demonstrates the inductive influence of embryonic stem cells and their microenvironment to reprogram cancer cells to exhibit a more benign phenotype, with profound implications for differentiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berlin, A. H. (1858). Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Dritte, neu bearbeitete under vermehrte Auflage, Berlin, 1861. 4th edition, 1871.

  2. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    Article  PubMed  CAS  Google Scholar 

  3. Petersen, B. E., Bowen, W. C., Patrene, K. D., Mars, W. M., Sullivan, A. K., Murase, N., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284(5417), 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  4. Brazelton, T. R., Rossi, F. M., Keshet, G. I., & Blau, H. M. (2000). From marrow to brain: Adult bone marrow-derived cells give rise to neuronal phenotypes in adult mice. Science, 290(5497), 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  5. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., & McKercher, S. R. (2000). Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 290(5497), 1779–1782.

    Article  PubMed  CAS  Google Scholar 

  6. Lagasse, E., Connors, H., Al-Dhalimy, M., Reitsma M., Dohse, M., Osborne, L., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine, 6(11), 1229–1234.

    Article  PubMed  CAS  Google Scholar 

  7. Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105(3), 369–377.

    Article  PubMed  CAS  Google Scholar 

  8. Sell, S. (2006). Potential gene therapy strategies for cancer stem cells. Current Gene Therapy, 6(5), 579–591.

    Article  PubMed  CAS  Google Scholar 

  9. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.

    Article  PubMed  CAS  Google Scholar 

  10. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). From the cover: Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983–3988.

    Article  CAS  Google Scholar 

  11. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  PubMed  CAS  Google Scholar 

  12. Hendrix, M. J. C., Seftor, E. A., Meltzer, P. S., Hess, A. R., Gruman, L. M., Nickoloff, B. J., et al. (2003). The stem cell plasticity of aggressive melanoma tumor cells. In S. Sell (Ed.), Stem cells handbook (pp. 297–306). New Jersey, USA: Humana.

    Chapter  Google Scholar 

  13. Hendrix, M. J. C., Seftor, E. A., Hess, A. R., & Seftor, R. E. B. (2003). Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nature Reviews. Cancer, 3(6), 411–421.

    Article  PubMed  CAS  Google Scholar 

  14. Hendrix, M. J. C., Seftor, E. A., Chu, Y. W., Seftor, R. E. B., Nagle, R. B., McDaniel, K. M., et al. (1992). Coexpression of Vimentin and Keratins by human melanoma tumor cells: Correlation with invasive and metastatic potential. Journal of the National Cancer Institute, 84(3), 165–174.

    Article  PubMed  CAS  Google Scholar 

  15. Fang, D., Nguyen, T. K., Leishear, K., Finko, R., Kulp, A. N., Hotz, S., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65(20), 9328–9337.

    Article  PubMed  CAS  Google Scholar 

  16. Hendrix, M. J. C., Seftor, R. E. B., Seftor, E. A., Gruman, L. M., Lee, L. M., Nickoloff, B. J., et al. (2002). Transendothelial function of human metastatic melanoma cells: Role of the microenvironment in cell-fate determination. Cancer Research, 62(3), 665–668.

    PubMed  CAS  Google Scholar 

  17. Hendrix, M. J. C., Seftor, E. A., Meltzer, P. S., Gardner, L. M. G., Hess, A. R., Kirschmann, D. A., et al. (2001). Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proceedings of the National Academy of Sciences, 98(14), 8018–8023.

    Article  CAS  Google Scholar 

  18. Maniotis, A. J., Folberg, R., Hess, A. R., Seftor, E. A., Gardner, L. M. G., Pe'er, J., et al. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. American Journal of Pathology, 155(3), 739–752.

    PubMed  CAS  Google Scholar 

  19. Velazquez, O. C., & Herlyn, M. (2003). The vascular phenotype of melanoma metastasis. Clinical & Experimental Metastasis, 20, 229–235.

    Article  CAS  Google Scholar 

  20. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406(6795), 536–540.

    Article  PubMed  CAS  Google Scholar 

  21. Weeraratna, A. T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., et al. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1(3), 279–288.

    Article  PubMed  CAS  Google Scholar 

  22. Balint, K., Xiao, M., Pinnix, C. C., Soma, A., Veres, I., Juhasz, I., et al. (2005). Activation of Notch1 signaling is required for ß-catenin-mediated human primary melanoma progression. Journal of Clinical Investigation, 115(11), 3166–3176.

    Article  PubMed  CAS  Google Scholar 

  23. Vallier, L., Reynolds, D., & Pedersen, R. A. (2004). Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Developmental Biology, 275(2), 403–421.

    Article  PubMed  CAS  Google Scholar 

  24. Whitman, M. (2001). Nodal signaling in early vertebrate embryos: Themes and variations. Developmental Cell, 1(5), 605–617.

    Article  PubMed  CAS  Google Scholar 

  25. Postovit, L. M., Seftor, E. A., Seftor, R. E. B., & Hendrix, M. J. C. (2007). Targeting Nodal in malignant melanoma cells. Expert Opinion on Therapeutic Targets, 11(4), 497–505.

    Article  PubMed  CAS  Google Scholar 

  26. Lotem, J., & Sachs, L. (2006). Epigenetics and the plasticity of differentiation in normal and cancer stem cell. Oncogene, 25(59), 7663–7672.

    Article  PubMed  CAS  Google Scholar 

  27. Postovit, L. M., Seftor, E. A., Seftor, R. E. B., Hendrix, M. J. C. (2006). A 3-D model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells, 24(3), 501–505.

    Article  PubMed  CAS  Google Scholar 

  28. Kulesa, P. M., Kasemeier-Kulesa, J. C., Teddy, J. M., Margaryan, N. V., Seftor, E. A., Seftor, R. E. B., et al. (2006). Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proceedings of the National Academy of Sciences, 103(10), 3752–3757.

    Article  CAS  Google Scholar 

  29. Pierce, G. B., Pantazis, C. G., Caldwell, J. E., & Wells, R. S. (1982). Specificity of the control of tumor formation by the blastocyst. Cancer Research, 42(3), 1082–1087.

    PubMed  CAS  Google Scholar 

  30. Gerschenson, M., Graves, K., Carson, S. D., Wells, R. S., & Pierce, G. B. (1986). Regulation of melanoma by the embryonic skin. Proceedings of the National Academy of Sciences, 83(19), 7307–7310.

    Article  CAS  Google Scholar 

  31. Mintz, B., & Illmensee, K. (1975). Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proceedings of the National Academy of Sciences, 72(9), 3585–3589.

    Article  CAS  Google Scholar 

  32. Seftor, E. A., Brown, K. M., Chin, L., Kirschmann, D. A., Wheaton, W. W., Protopopov, A., et al. (2005). Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Research, 65(22), 10164–10169.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, L. M., Seftor, E. A., Bonde, G., Cornell, R. A., & Hendrix, M. J. C. (2005). The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation. Developmental Dynamics, 233(4), 1560–1570.

    Article  PubMed  CAS  Google Scholar 

  34. Haldi, M., Ton, C., Seng, W. L., & McGrath, P. (2006). Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis, 9(3), 139–151.

    Article  PubMed  Google Scholar 

  35. Hendrix, M. J. C., Seftor, E. A., Seftor, R. E. B., Kasemeier-Kulesa, J., Kulesa, P. M., & Postovit, L. M. (2007). Reprogramming metastatic tumor cells with embryonic microenvironments. Nature Reviews Cancer, 7(4), 246–255.

    Article  PubMed  CAS  Google Scholar 

  36. Mesnard, D., Guzman-Ayala, M., & Constam, D. B. (2006). Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast bgefore overt axial patterning. Development, 133(13), 2497–2505.

    PubMed  CAS  Google Scholar 

  37. Nawshad, A., Lagamba, D., Polad, A., & Hay, E. D. (2005). Transforming growth factor-ß signaling during epithelial-mesenchymal transformation: Implications for embryogenesis and tumor metastasis. Cells Tissues Organs, 179(1–2), 11–23.

    Article  PubMed  CAS  Google Scholar 

  38. Schier, A. F. (2003). Nodal signaling in vertebrate development. Annual Review of Cell and Developmental Biology, 19, 589–621.

    Article  PubMed  CAS  Google Scholar 

  39. Yeo, C., & Whitman, M. (2001). Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Molecular Cell, 7(5), 949–957.

    Article  PubMed  CAS  Google Scholar 

  40. Bianco, C., Adkins, H. B., Wechselberger, C., Seno, M., Normanno, N., De Luca, A., et al. (2002). Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial cells. Molecular and Cellular Biology, 22(8), 2586–2597.

    Article  PubMed  CAS  Google Scholar 

  41. Herman, J. G., & Baylin, S. B. (2003). Mechanisms of disease: Gene silencing in cancer in association with promoter hyper methylation. New England Journal of Medicine, 349(21), 2042–2054.

    Article  PubMed  CAS  Google Scholar 

  42. Bibikova, M., Chudin, E., Wu, B., Zhou, L., Garcia, E. W., Liu, Y., et al. (2006). Human embryonic stem cells have a unique epigenetic signature. Genome Research, 16(9), 1075–1083.

    Article  PubMed  CAS  Google Scholar 

  43. Postovit, L.-M., Costa, F. F., Bischof, J. M., Seftor, E. A., Wen, B., Seftor, R. E. B. et al. (2007). The Commonality of plasticity underlying multipotent tumor cells and embryonic stem cells. Journal of Cellular Biochemistry, [Epub. Dec. 2006; doi:10.1002/jcb.21227], (in press).

  44. Topczewska, J. M., Postovit, L. M., Margaryan, N. V., Sam, A., Hess, A. R., Wheaton, W. W., et al. (2006). Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness. Nature Medicine, 12(8), 925–932.

    Article  PubMed  CAS  Google Scholar 

  45. Javelaud, D., Delmas, V., Moller, M., Sextius, P., Andre, J., Menashi, S., et al. (2005). Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo. Oncogene, 24(51), 7624–7629.

    Article  PubMed  CAS  Google Scholar 

  46. De Luca, A., Arra, C., D’Antonio, A., Cassamassimi, A., Losito, S., Ferraro, P., et al. (2000). Simultaneous blockade of the different EGF-like growth factors results in efficient growth inhibition of human colon carcinoma xenografts. Oncogene, 19(51), 5863–5871.

    Article  PubMed  CAS  Google Scholar 

  47. Adkins, H. B., Bianco, C., Schiffer, S. G., Rayhorn, P., Zafari, M., Cheung, A. E., et al. (2003). Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. Journal of Clinical Investigation, 112(4), 575–587.

    Article  PubMed  CAS  Google Scholar 

  48. Xing, P. X., Hu, X. F., Pietersz, G. A., Hosick, H. L., & McKenzie, I. F. (2004). Cripto-1: A novel target for cancer therapy by monoclonal antibodies. Cancer Research, 64(11), 4018–4023.

    Article  PubMed  CAS  Google Scholar 

  49. Halder, S. K., Beauchamp, R. D., & Datta, P. K. (2005). A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia, 7(5), 509–521.

    Article  PubMed  CAS  Google Scholar 

  50. Hjelmeland, M. D., Hjelmeland, A. B., Sathornsumetee, S., Reese, E. D., Herbstreith, M. H., Laping, N. J., et al. (2004). SB-431542, a small molecule transforming growth factor-ß-receptor antagonist, inhibits human glioma cell line proliferation and motility. Molecular Cancer Therapeutics, 3(6), 737–745.

    PubMed  CAS  Google Scholar 

  51. Seftor, R. E. B., Seftor, E. A., Koshikawa, N., Meltzer, P. S., Gardner, L. M. G., Bilban, M., et al. (2001). Cooperative interactions of laminin 5{gamma}2 chain, matrix metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Research, 61(17), 6322–6327.

    PubMed  CAS  Google Scholar 

  52. Postovit, L. M., Seftor, E. A., Seftor, R. E. B., & Hendrix, M. J. C. (2006). Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Research, 66(16), 7833–7836.

    Article  PubMed  CAS  Google Scholar 

  53. Seftor, R. E. B., Seftor, E. A., Kirschmann, D. A., & Hendrix, M. J. C. (2002). Targeting the tumor microenvironment with chemically modified tetracyclines: Inhibition of laminin 5{gamma}2 chain promigratory fragments and vasculogenic mimicry. Molecular Cancer Therapeutics, 1(13), 1173–1179.

    PubMed  CAS  Google Scholar 

  54. Golan-Mashiach, M., Dazard, J. E., Gerecht-Nir, S., Amariglio, N., Fisher, T., Jacob-Hirsch, J., et al. (2005). Design principle of gene expression used by human stem cells: Implication for pluripotency. FASEB Journal, 19(1), 147–149.

    PubMed  CAS  Google Scholar 

  55. Tabibzadeh, S., & Hemmati-Brivanlou, A. (2006). Lefty at the crossroads of “stemness” and differentiative events. Stem Cells, 24(9), 1998–2006.

    Article  PubMed  CAS  Google Scholar 

  56. Sato, N., Sanjuan, I. M., Heke, M., Uchida, M., Naef, F., & Brivanlou, A. H. (2003). Molecular signature of human embryonic stem cells and its comparison with the mouse. Developmental Biology, 260(2), 404–413.

    Article  PubMed  CAS  Google Scholar 

  57. Bianco, C., Strizzi, L., Mancino, M., Rehman, A., Hamada, S., Watanabe, K., et al. (2006). Identification of Cripto-1 as a novel serologic marker for breast and colon cancer. Clinical Cancer Research, 12(17), 5158–5164.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the scientific interactions with Drs. Paul Kulesa and Jennifer Kasemeier-Kulesa at the Stowers Institute for Medical Research, Drs. Jolanta Topczewska and Jacek Topczewski at the Children’s Memorial Research Center, and Dr. Brian Nickoloff for his expertise in dermatopathology. This work is supported by NIH grant CA59702, an Illinois Regenerative Medicine Institute grant, a Charlotte Geyer Foundation grant (MJCH), and a Canadian Institute for Health Research postdoctoral fellowship (L-MP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary J. C. Hendrix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, D.E., Postovit, LM., Seftor, E.A. et al. Exploiting the Convergence of Embryonic and Tumorigenic Signaling Pathways to Develop New Therapeutic Targets. Stem Cell Rev 3, 68–78 (2007). https://doi.org/10.1007/s12015-007-0010-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0010-x

Keywords