Skip to main content

Advertisement

Log in

Synucleinopathies: Intrinsic and Extrinsic Factors

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Araújo Boleti, A. P., de Oliveira Flores, T. M., Moreno, S. E., Anjos, L., Mortari, M. R., & Migliolo, L. (2020). Neuroinflammation: An overview of neurodegenerative and metabolic diseases and of biotechnological studies. Neurochemistry International, 136, 104714. https://doi.org/10.1016/j.neuint.2020.104714

    Article  CAS  PubMed  Google Scholar 

  2. Dugger, B. N., & Dickson, D. W. (2017). Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 9, a028035. https://doi.org/10.1101/cshperspect.a028035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mendoza-Velásquez, J. J., Flores-Vázquez, J. F., Barrón-Velázquez, E., Sosa-Ortiz, A. L., Illigens, B. M., & Siepmann, T. (2019). Autonomic dysfunction in α-synucleinopathies. Frontiers in Neurology, 10, 363. https://doi.org/10.3389/fneur.2019.00363

    Article  PubMed  PubMed Central  Google Scholar 

  4. Savica, R., Boeve, B. F., & Mielke, M. M. (2018). When do α-synucleinopathies start? An epidemiological timeline: A review. JAMA Neurology, 75, 503–509. https://doi.org/10.1001/jamaneurol.2017.4243

    Article  PubMed  Google Scholar 

  5. Barker, R. A., & Williams-Gray, C. H. (2016). Review: The spectrum of clinical features seen with alpha synuclein pathology. Neuropathology and Applied Neurobiology, 42, 6–19. https://doi.org/10.1111/nan.12303

    Article  CAS  PubMed  Google Scholar 

  6. Maroteaux, L., Campanelli, J. T., & Scheller, R. H. (1988). Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. The Journal of Neuroscience, 8, 2804–2815. https://doi.org/10.3389/fcell.2022.874596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). α-Synuclein in Lewy bodies. Nature, 388, 839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  8. Burré, J., Sharma, M., & Südhof, T. C. (2018). Cell biology and pathophysiology of α-synuclein. Cold Spring Harbor Perspectives in Medicine, 8, a024091. https://doi.org/10.1101/cshperspect.a024091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atik, A., Stewart, T., & Zhang, J. (2016). Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathology, 26, 410–418. https://doi.org/10.1111/bpa.12370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, T. E., Newman, A. J., Imberdis, T., Brontesi, L., Tripathi, A., Ramalingam, N., Fanning, S., Selkoe, D., & Dettmer, U. (2021). Excess membrane binding of monomeric alpha-, beta- and gamma-synuclein is invariably associated with inclusion formation and toxicity. Human Molecular Genetics, 30, 2332–2346. https://doi.org/10.1093/hmg/ddab188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fauvet, B., Mbefo, M. K., Fares, M. B., Desobry, C., Michael, S., Ardah, M. T., Tsika, E., Coune, P., Prudent, M., Lion, N., Eliezer, D., Moore, D. J., Schneider, B., Aebischer, P., El-Agnaf, O. M., Masliah, E., & Lashuel, H. A. (2012). α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. Journal of Biological Chemistry, 287, 15345–15364. https://doi.org/10.1074/jbc.M111.318949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, A., Rastegar, C., & Mao, X. (2022). α-Synuclein conformational plasticity: Physiologic states, pathologic strains, and biotechnological applications. Biomolecules, 12, 994. https://doi.org/10.3390/biom12070994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma, K., Mehra, S., Sawner, A. S., Markam, P. S., Panigrahi, R., Navalkar, A., Chatterjee, D., Kumar, R., Kadu, P., Patel, K., Ray, S., Kumar, A., & Maji, S. K. (2020). Effect of disease-associated P123H and V70M mutations on β-synuclein fibrillation. ACS Chemical Neuroscience, 11, 2836–2848. https://doi.org/10.1021/acschemneuro.0c00405

    Article  CAS  PubMed  Google Scholar 

  14. Winham, C. L., Le, T., Jellison, E. R., Silver, A. C., Levesque, A. A., & Koob, A. O. (2019). γ-Synuclein induces human cortical astrocyte proliferation and subsequent BDNF expression and release. Neuroscience, 410, 41–54. https://doi.org/10.1016/j.neuroscience.2019.04.057

    Article  CAS  PubMed  Google Scholar 

  15. Halbgebauer, S., Abu-Rumeileh, S., Oeckl, P., Steinacker, P., Roselli, F., Wiesner, D., Mammana, A., Beekes, M., Kortazar-Zubizarreta, I., Perez de Nanclares, G., Capellari, S., Giese, A., Castilla, J., Ludolph, A. C., Žáková, D., Parchi, P., & Otto, M. (2022). Blood β-synuclein and neurofilament light chain during the course of prion disease. Neurology, 98, e1434–e1445. https://doi.org/10.1212/WNL.0000000000200002

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y., Tapia, M. L., Yeh, J., He, R. C., Pomerleu, D., & Lee, R. K. (2020). Differential gamma-synuclein expression in acute and chronic retinal ganglion cell death in the retina and optic nerve. Molecular Neurobiology, 57, 698–709. https://doi.org/10.1007/s12035-019-01735-1

    Article  CAS  PubMed  Google Scholar 

  17. Villar-Piqué, A., Lopes da, F. T., & Outeiro, T. F. (2016). Structure, function and toxicity of alpha-synuclein: The Bermuda triangle in synucleinopathies. Journal of Neurochemistry, 139, 240–255. https://doi.org/10.1111/jnc.13249

    Article  CAS  PubMed  Google Scholar 

  18. Das, T., & Eliezer, D. (2019). Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. Biochimica et Biophysica Acta Proteins and Proteomics, 1867, 879–889. https://doi.org/10.1016/j.bbapap.2019.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Surguchov, A., & Surguchev, A. (2022). Synucleins: New data on misfolding, aggregation and role in diseases. Biomedicines, 10, 3241. https://doi.org/10.3390/biomedicines10123241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lautenschläger, J., Stephens, A. D., Fusco, G., Ströhl, F., Curry, N., Zacharopoulou, M., Michel, C. H., Laine, R., Nespovitaya, N., Fantham, M., Pinotsi, D., Zago, W., Fraser, P., Tandon, A., St George-Hyslop, P., Rees, E., Phillips, J. J., De Simone, A., Kaminski, C. F., & Schierle, G. S. (2018). C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nature Communications, 9, 712. https://doi.org/10.1038/s41467-018-03111-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manzanza, N., de, O., Sedlackova, L., & Kalaria, R. N. (2021). Alpha-synuclein post-translational modifications: Implications for pathogenesis of Lewy body disorders. Frontiers in Aging Neuroscience, 13, 690293. https://doi.org/10.3389/fnagi.2021.690293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Medeiros, J., Bamm, V. V., Jany, C., Coackley, C., Ward, M. E., Harauz, G., Ryan, S. D., & Ladizhansky, V. (2021). Partial magic angle spinning NMR 1H, 13C, 15N resonance assignments of the flexible regions of a monomeric alpha-synuclein: Conformation of C-terminus in the lipid-bound and amyloid fibril states. Biomolecular NMR Assignments, 15, 297–303. https://doi.org/10.1007/s12104-021-10020-z

    Article  CAS  PubMed  Google Scholar 

  23. Sulzer, D., & Edwards, R. H. (2019). The physiological role of α-synuclein and its relationship to Parkinson’s disease. Journal of Neurochemistry, 150, 475–486. https://doi.org/10.1111/jnc.14810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, S., Ninan, I., Antonova, I., Battaglia, F., Trinchese, F., Narasanna, A., Kolodilov, N., Dauer, W., Hawkins, R. D., & Arancio, O. (2004). α-Synuclein produces a long-lasting increase in neurotransmitter release. The EMBO Journal, 23, 4506–4516. https://doi.org/10.1038/sj.emboj.7600451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Somayaji, M., Lanseur, Z., Choi, S. J., Sulzer, D., & Mosharov, E. V. (2021). Roles for α-synuclein in gene expression. Genes, 12, 1166. https://doi.org/10.3390/genes12081166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, Q., Wang, S., Chen, J., Cai, H., Huang, W., Zhang, Y., Wang, L., & Xing, Y. (2019). MicroRNA-190 alleviates neuronal damage and inhibits neuroinflammation via Nlrp3 in MPTP-induced Parkinson’s disease mouse model. Journal of Cellular Physiology, 234, 23379–23387. https://doi.org/10.1002/jcp.28907

    Article  CAS  PubMed  Google Scholar 

  27. Soll, L. G., Eisen, J. N., Vargas, K. J., Medeiros, A. T., Hammar, K. M., & Morgan, J. R. (2020). α-Synuclein-112 impairs synaptic vesicle recycling consistent with its enhanced membrane binding properties. Frontiers in Cell and Developmental Biology, 8, 405. https://doi.org/10.3389/fcell.2020.00405

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mahapatra, A., Mandal, N., & Chattopadhyay, K. (2021). Cholesterol in synaptic vesicle membranes regulates the vesicle-binding, function, and aggregation of α-synuclein. The Journal of Physical Chemistry B, 125, 11099–11111. https://doi.org/10.1021/acs.jpcb.1c03533

    Article  CAS  PubMed  Google Scholar 

  29. Chen, R. H., Wislet-Gendebien, S., Samuel, F., Visanji, N. P., Zhang, G., Marsilio, D., Langman, T., Fraser, P. E., & Tandon, A. (2013). α-Synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. Journal of Biological Chemistry, 288, 7438–7449. https://doi.org/10.1074/jbc.M112.439497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fonseca-Ornelas, L., Eisbach, S. E., Paulat, M., Giller, K., Fernández, C. O., Outeiro, T. F., Becker, S., & Zweckstetter, M. (2014). Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nature Communications, 5, 5857. https://doi.org/10.1038/ncomms6857

    Article  CAS  PubMed  Google Scholar 

  31. Man, W. K., Tahirbegi, B., Vrettas, M. D., Preet, S., Ying, L., Vendruscolo, M., De Simone, A., & Fusco, G. (2021). The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nature Communications, 12, 927. https://doi.org/10.1038/s41467-021-21027-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bernal-Conde, L. D., Ramos-Acevedo, R., Reyes-Hernández, M. A., Balbuena-Olvera, A. J., Morales-Moreno, I. D., Argüero-Sánchez, R., Schüle, B., & Guerra-Crespo, M. (2020). Alpha-synuclein physiology and pathology: A perspective on cellular structures and organelles. Frontiers in Neuroscience, 13, 1399. https://doi.org/10.3389/fnins.2019.01399

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kanaan, N. M., & Manfredsson, F. P. (2012). Loss of functional alpha-synuclein: A toxic event in Parkinson’s disease?. Journal of Parkinson’s Disease, 2, 249–267. https://doi.org/10.3233/JPD-012138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartels, T., Choi, J. G., & Selkoe, D. J. (2011). α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature, 477, 107–110. https://doi.org/10.1038/nature10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dettmer, U., Newman, A. J., Soldner, F., Luth, E. S., Kim, N. C., von Saucken, V. E., Sanderson, J. B., Jaenisch, R., Bartels, T., & Selkoe, D. (2015). Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nature Communications, 6, 7314. https://doi.org/10.1038/ncomms8314

    Article  PubMed  Google Scholar 

  36. Fernández, R. D., & Lucas, H. R. (2018). Isolation of recombinant tetrameric N-acetylated α-synuclein. Protein Expression and Purification, 152, 146–154. https://doi.org/10.1016/j.pep.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  37. Cascella, R., Bigi, A., Cremades, N., & Cecchi, C. (2022). Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cellular and Molecular Life Sciences, 79, 174. https://doi.org/10.1007/s00018-022-04166-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alam, P., Bousset, L., Melki, R., & Otzen, D. E. (2019). α-Synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. Journal of Neurochemistry, 150, 522–534. https://doi.org/10.1111/jnc.14808

    Article  CAS  PubMed  Google Scholar 

  39. Ray, S., Singh, N., Kumar, R., Patel, K., Pandey, S., Datta, D., Mahato, J., Panigrahi, R., Navalkar, A., Mehra, S., Gadhe, L., Chatterjee, D., Sawner, A. S., Maiti, S., Bhatia, S., Gerez, J. A., Chowdhury, A., Kumar, A., Padinhateeri, R., Riek, R., Krishnamoorthy, G., & Maji, S. K. (2020). α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nature Chemistry, 12, 705–716. https://doi.org/10.1038/s41557-020-0465-9

    Article  CAS  PubMed  Google Scholar 

  40. Biswas, S., Bhadra, A., Lakhera, S., Soni, M., Panuganti, V., Jain, S., & Roy, I. (2021). Molecular crowding accelerates aggregation of α-synuclein by altering its folding pathway. European Biophysics Journal, 50, 59–67. https://doi.org/10.1007/s00249-020-01486-1

    Article  CAS  PubMed  Google Scholar 

  41. Afitska, K., Fucikova, A., Shvadchak, V. V., & Yushchenko, D. A. (2019). α-Synuclein aggregation at low concentrations. Biochimica et Biophysica Acta - Proteins and Proteomics, 1867, 701–709. https://doi.org/10.1016/j.bbapap.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  42. Mohapatra, A., Bohara, V. S., Kumar, S., & Chaudhary, N. (2021). Polymyxin B accelerates the α-synuclein aggregation. Biophysical Chemistry, 277, 106628. https://doi.org/10.1016/j.bpc.2021.106628

    Article  CAS  PubMed  Google Scholar 

  43. Toleikis, Z., Ziaunys, M., Baranauskiene, L., Petrauskas, V., Jaudzems, K., & Smirnovas, V. (2021). S100A9 alters the pathway of alpha-synuclein amyloid aggregation. International Journal of Molecular Sciences, 22, 7972. https://doi.org/10.3390/ijms22157972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ziaunys, M., Sakalauskas, A., Mikalauskaite, K., & Smirnovas, V. (2021). Polymorphism of alpha-synuclein amyloid fibrils depends on ionic strength and protein concentration. International Journal of Molecular Sciences, 22, 12382. https://doi.org/10.3390/ijms222212382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kalia, L. V., Kalia, S. K., McLean, P. J., Lozano, A. M., & Lang, A. E. (2013). α-Synuclein oligomers and clinical implications for Parkinson disease. Annals of Neurology, 73, 155–169. https://doi.org/10.1002/ana.23746

    Article  CAS  PubMed  Google Scholar 

  46. Karpinar, D. P., Balija, M. B., Kügler, S., Opazo, F., Rezaei-Ghaleh, N., Wender, N., Kim, H. Y., Taschenberger, G., Falkenburger, B. H., Heise, H., Kumar, A., Riedel, D., Fichtner, L., Voigt, A., Braus, G. H., Giller, K., Becker, S., Herzig, A., Baldus, M., Jäckle, H., Eimer, S., Schulz, J. B., Griesinger, C., & Zweckstetter, M. (2009). Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. The EMBO Journal, 28, 3256–3268. https://doi.org/10.1038/emboj.2009.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, X., Dong, C., Hoffmann, M., Garen, C. R., Cortez, L. M., Petersen, N. O., & Woodside, M. T. (2019). Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Scientific Reports, 9, 1734. https://doi.org/10.1038/s41598-018-37584-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uversky, V. N. (2003). A protein-chameleon: Conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. Journal of Biomolecular Structure and Dynamics, 21, 211–234. https://doi.org/10.1080/07391102.2003.10506918

    Article  CAS  PubMed  Google Scholar 

  49. Gaspar, R., Meisl, G., Buell, A. K., Young, L., Kaminski, C. F., Knowles, T. P., Sparr, E., & Linse, S. (2017). Secondary nucleation of monomers on fibril surface dominates α-synuclein aggregation and provides autocatalytic amyloid amplification. Quarterly Reviews of Biophysics, 50, e6. https://doi.org/10.1017/S0033583516000172

    Article  PubMed  Google Scholar 

  50. Arosio, P., Knowles, T. P., & Linse, S. (2015). On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics, 17, 7606–7618. https://doi.org/10.1039/c4cp05563b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Buell, A. K., Galvagnion, C., Gaspar, R., Sparr, E., Vendruscolo, M., Knowles, T. P., Linse, S., & Dobson, C. M. (2014). Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 111, 7671–7676. https://doi.org/10.1073/pnas.1315346111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghosh, D., Mehra, S., Sahay, S., Singh, P. K., & Maji, S. K. (2017). α-synuclein aggregation and its modulation. International Journal of Biological Macromolecules, 100, 37–54. https://doi.org/10.1016/j.ijbiomac.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  53. Kumari, P., Ghosh, D., Vanas, A., Fleischmann, Y., Wiegand, T., Jeschke, G., Riek, R., & Eichmann, C. (2021). Structural insights into α-synuclein monomer–fibril interactions. The Proceedings of the National Academy of Sciences, 118, e2012171118. https://doi.org/10.1073/pnas.2012171118.

    Article  CAS  Google Scholar 

  54. Jan, A., Gonçalves, N. P., Vaegter, C. B., Jensen, P. H., & Ferreira, N. (2021). The prion-like spreading of alpha-synuclein in Parkinson’s disease: Update on models and hypotheses. International Journal of Molecular Sciences, 22, 8338. https://doi.org/10.3390/ijms22158338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brahic, M., Bousset, L., Bieri, G., Melki, R., & Gitler, A. D. (2016). Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathologica, 131, 539–548. https://doi.org/10.1007/s00401-016-1538-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo, J. L., & Lee, V. M. (2014). Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nature Medicine, 20, 130–138. https://doi.org/10.1038/nm.3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stuendl, A., Kunadt, M., Kruse, N., Bartels, C., Moebius, W., Danzer, K. M., Mollenhauer, B., & Schneider, A. (2016). Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain, 139, 481–494. https://doi.org/10.1093/brain/awv346

    Article  PubMed  Google Scholar 

  58. Zhu, C., Bilousova, T., Focht, S., Jun, M., Elias, C. J., Melnik, M., Chandra, S., Campagna, J., Cohn, W., Hatami, A., Spilman, P., Gylys, K. H., & John, V. (2021). Pharmacological inhibition of nSMase2 reduces brain exosome release and α-synuclein pathology in a Parkinson’s disease model. Molecular Brain, 14, 70. https://doi.org/10.1186/s13041-021-00776-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sang, Q., Liu, X., Wang, L., Qi, L., Sun, W., Wang, W., Sun, Y., & Zhang, H. (2018). CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson’s disease by targeting miR-7. Aging, 10, 1281–1293. https://doi.org/10.18632/aging.101466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ottolini, D., Calí, T., Szabò, I., & Brini, M. (2017). Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biological Chemistry, 398, 77–100. https://doi.org/10.1515/hsz-2016-0201

    Article  CAS  PubMed  Google Scholar 

  61. Shearer, L. J., Petersen, N. O., & Woodside, M. T. (2021). Internalization of α-synuclein oligomers into SH-SY5Y cells. Biophysical Journal, 120, 877–885. https://doi.org/10.1016/j.bpj.2020.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, S., Wang, R., & Wang, G. (2019). Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chemical Neuroscience, 10, 945–953. https://doi.org/10.1021/acschemneuro.8b00454

    Article  CAS  PubMed  Google Scholar 

  63. Brás, I. C., Lopes, L. V., & Outeiro, T. F. (2018). Sensing α-synuclein from the outside via the prion protein: Implications for neurodegeneration. Movement Disorders, 33, 1675–1684. https://doi.org/10.1002/mds.27478

    Article  PubMed  Google Scholar 

  64. Brás, I. C., & Outeiro, T. F. (2021). Alpha-Synuclein: Mechanisms of release and pathology progression in synucleinopathies. Cells, 10, 375. https://doi.org/10.3390/cells10020375

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vascellari, S., & Manzin, A. (2021). Parkinson’s disease: A prionopathy? International Journal of Molecular Sciences, 22, 8022. https://doi.org/10.3390/ijms22158022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hernandez, S. M., Tikhonova, E. B., & Karamyshev, A. L. (2020). Protein-protein interactions in alpha-synuclein biogenesis: New potential targets in Parkinson’s disease. Frontiers in Aging Neuroscience, 12, 72. https://doi.org/10.3389/fnagi.2020.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blauwendraat, C., Nalls, M. A., & Singleton, A. B. (2020). The genetic architecture of Parkinson’s disease. Lancet Neurology, 19, 170–178. https://doi.org/10.1016/S1474-4422(19)30287-X

    Article  CAS  PubMed  Google Scholar 

  68. Quadri, M., Mandemakers, W., & Grochowska, M. M., et al. (2018). LRP10 genetic variants in familial Parkinson’s disease and dementia with Lewy bodies: A genome-wide linkage and sequencing study. Lancet Neurology, 17, 597–608. https://doi.org/10.1016/S1474-4422(18)30179-0

    Article  CAS  PubMed  Google Scholar 

  69. Usmani, A., Shavarebi, F., & Hiniker, A. (2021). The cell biology of LRRK2 in Parkinson’s disease. Molecular and Cellular Biology, 41, e00660–20. https://doi.org/10.1128/MCB.00660-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chia, R., Sabir, M. S., & Bandres-Ciga, S. (2021). Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 53, 294–303. https://doi.org/10.1038/s41588-021-00785-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riederer, P., Berg, D., Casadei, N., Cheng, F., Classen, J., Dresel, C., Jost, W., Krüger, R., Müller, T., Reichmann, H., Rieß, O., Storch, A., Strobel, S., van Eimeren, T., Völker, H. U., Winkler, J., Winklhofer, K. F., Wüllner, U., Zunke, F., & Monoranu, C. M. (2019). α-Synuclein in Parkinson’s disease: Causal or bystander? Journal of Neural Transmission, 126, 815–840. https://doi.org/10.1007/s00702-019-02025-9

    Article  PubMed  Google Scholar 

  72. Norkaew, S., Lertmaharit, S., Wilaiwan, W., Siriwong, W., Pérez, H. M., & Robson, M. G. (2015). An association between organophosphate pesticides exposure and Parkinsonism amongst people in an agricultural area in Ubon Ratchathani Province, Thailand. Roczniki Państwowego Zakładu Higieny, 66, 21–26

    CAS  PubMed  Google Scholar 

  73. Yuan, X., Tian, Y., Liu, C., & Zhang, Z. (2022). Environmental factors in Parkinson’s disease: New insights into the molecular mechanisms. Toxicology Letters, 356, 1–10. https://doi.org/10.1016/j.toxlet.2021.12.003

    Article  CAS  PubMed  Google Scholar 

  74. Goldman, S. M. (2014). Environmental toxins and Parkinson’s disease. Annual Review of Pharmacology and Toxicology, 54, 141–164. https://doi.org/10.1146/annurev-pharmtox-011613-135937

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, Y., Lu, M., Du, R. H., Qiao, C., Jiang, C. Y., Zhang, K. Z., Ding, J. H., & Hu, G. (2016). MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Molecular Neurodegeneration, 11, 28. https://doi.org/10.1186/s13024-016-0094-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zeng, X. S., Geng, W. S., & Jia, J. J. (2018). Neurotoxin-induced animal models of Parkinson disease: Pathogenic mechanism and assessment. ASN Neuro, 10, 1759091418777438. https://doi.org/10.1177/1759091418777438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Konnova, E. A., & Swanberg, M. (2018). Animal Models of Parkinson’s Disease. In T. B. Stoker et. al. (Eds.), Parkinson’s Disease: Pathogenesis and Clinical Aspects. Codon Publications

  78. Rocha, E. M., De Miranda, B., & Sanders, L. H. (2018). Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of Disease, 109, 249–257. https://doi.org/10.1016/j.nbd.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  79. Wang, K., Zhang, C., Zhang, B., Li, G., Shi, G., Cai, Q., & Huang, M. (2022). Gut dysfunction may be the source of pathological aggregation of alpha-synuclein in the central nervous system through Paraquat exposure in mice. Ecotoxicology and Environmental Safety, 246, 114152. https://doi.org/10.1016/j.ecoenv.2022.114152

    Article  CAS  PubMed  Google Scholar 

  80. Benskey, M. J., Perez, R. G., & Manfredsson, F. P. (2016). The contribution of alpha synuclein to neuronal survival and function—Implications for Parkinson’s disease. Journal of Neurochemistry, 137, 331–359. https://doi.org/10.1111/jnc.13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. See, W. Z. C., Naidu, R., & Tang, K. S. (2022). Cellular and Molecular Events Leading to Paraquat-Induced Apoptosis: Mechanistic Insights into Parkinson’s Disease Pathophysiology. Molecular neurobiology, 59(6), 3353–3369. https://doi.org/10.1007/s12035-022-02799-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nuber, S., & Selkoe, D. J. (2023). The Parkinson-Associated Toxin Paraquat Shifts Physiological α-Synuclein Tetramers toward Monomers That Can Be Calpain-Truncated and Form Oligomers. The American journal of pathology, 193(5), 520–531. https://doi.org/10.1016/j.ajpath.2023.01.010

    Article  CAS  PubMed  Google Scholar 

  83. De Miranda, B. R., Castro, S. L., Rocha, E. M., Bodle, C. R., Johnson, K. E., & Greenamyre, J. T. (2021). The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. Neurobiology of Disease, 153, 105312. https://doi.org/10.1016/j.nbd.2021.105312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jellinger, K. A. (2019). Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opinion on Drug Discovery, 14, 969–982. https://doi.org/10.1080/17460441.2019.1638908

    Article  PubMed  Google Scholar 

  85. Jensen, P. H., Nielsen, M. S., Jakes, R., Dotti, C. G., & Goedert, M. (1998). Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. Journal of Biological Chemistry, 273, 26292–26294. https://doi.org/10.1074/jbc.273.41.26292

    Article  CAS  PubMed  Google Scholar 

  86. Moons, R., Konijnenberg, A., Mensch, C., Van Elzen, R., Johannessen, C., Maudsley, S., Lambeir, A. M., & Sobott, F. (2020). Metal ions shape α-synuclein. Scientific Reports, 10, 16293. https://doi.org/10.1038/s41598-020-73207-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. González, N., Arcos-López, T., König, A., Quintanar, L., Menacho, M. M., Outeiro, T. F., & Fernández, C. O. (2019). Effects of alpha-synuclein post-translational modifications on metal binding. Journal of Neurochemistry, 150, 507–521. https://doi.org/10.1111/jnc.14721

    Article  CAS  PubMed  Google Scholar 

  88. Harischandra, D. S., Rokad, D., Neal, M. L., Ghaisas, S., Manne, S., Sarkar, S., Panicker, N., Zenitsky, G., Jin, H., Lewis, M., Huang, X., Anantharam, V., Kanthasamy, A., & Kanthasamy, A. G. (2019). Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Science signaling, 12(572), eaau4543. https://doi.org/10.1126/scisignal.aau4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tarnacka, B., Jopowicz, A., & Maślińska, M. (2021). Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions. International journal of molecular sciences, 22(15), 7820. https://doi.org/10.3390/ijms22157820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lorentzon, E., Horvath, I., Kumar, R., Rodrigues, J. I., Tamás, M. J., & Wittung-Stafshede, P. (2021). Effects of the Toxic Metals Arsenite and Cadmium on α-Synuclein Aggregation In Vitro and in Cells. International journal of molecular sciences, 22(21), 11455. https://doi.org/10.3390/ijms222111455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mochizuki, H., Choong, C. J., & Baba, K. (2020). Parkinson’s disease and iron. Journal of Neural Transmission, 127, 181–187. https://doi.org/10.1007/s00702-020-02149-3

    Article  PubMed  Google Scholar 

  92. Peres, T. V., Parmalee, N. L., Martinez-Finley, E. J., & Aschner, M. (2016). Untangling the manganese-α-synuclein web. Frontiers in Neuroscience, 10, 364. https://doi.org/10.3389/fnins.2016.00364

    Article  PubMed  PubMed Central  Google Scholar 

  93. Angelova, P. R., Choi, M. L., Berezhnov, A. V., Horrocks, M. H., Hughes, C. D., De, S., Rodrigues, M., Yapom, R., Little, D., Dolt, K. S., Kunath, T., Devine, M. J., Gissen, P., Shchepinov, M. S., Sylantyev, S., Pavlov, E. V., Klenerman, D., Abramov, A. Y., & Gandhi, S. (2020). Alpha synuclein aggregation drives ferroptosis: An interplay of iron, calcium and lipid peroxidation. Cell Death and Differentiation, 27, 2781–2796. https://doi.org/10.1038/s41418-020-0542-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fonseca, C. G., Schaan, A. P., Cavalcante, G. C., Sena-Dos-Santos, C., de Souza, T. P., Souza Port’s, N. M., Dos Santos Pinheiro, J. A., Ribeiro-Dos-Santos, Â., & Vidal, A. F. (2021). Nuclear and mitochondrial genome, epigenome and gut microbiome: Emerging molecular biomarkers for Parkinson’s disease. International Journal of Molecular Sciences, 22, 9839. https://doi.org/10.3390/ijms22189839

    Article  CAS  Google Scholar 

  95. Herre, M., & Korb, E. (2019). The chromatin landscape of neuronal plasticity. Current Opinion in Neurobiology, 59, 79–86. https://doi.org/10.1016/j.conb.2019.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sundaramoorthy, T. H., & Castanho, I. (2022). The neuroepigenetic landscape of vertebrate and invertebrate models of neurodegenerative diseases. Epigenetics Insights, 15, 25168657221135850. https://doi.org/10.1177/25168657221135848

    Article  Google Scholar 

  97. Wüllner, U., Kaut, O., deBoni, L., Piston, D., & Schmitt, I. (2016). DNA methylation in Parkinson’s disease. Journal of Neurochemistry, 139(Suppl 1), 108–120. https://doi.org/10.1111/jnc.13646

    Article  CAS  PubMed  Google Scholar 

  98. Ren, Y. (2022). Regulatory mechanism and biological function of UHRF1-DNMT1-mediated DNA methylation. Functional & Integrative Genomics, 22, 1113–1126. https://doi.org/10.1007/s10142-022-00918-9

    Article  CAS  Google Scholar 

  99. Lyko, F. (2018). The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nature Reviews Genetics, 19, 81–92. https://doi.org/10.1038/nrg.2017.80

    Article  CAS  PubMed  Google Scholar 

  100. Ye, S., Zhong, J., Huang, J., Chen, L., Yi, L., Li, X., Lv, J., Miao, J., Li, H., Chen, D., & Li, C. (2021). Protective effect of plastrum testudinis extract on dopaminergic neurons in a Parkinson’s disease model through DNMT1 nuclear translocation and SNCA’s methylation. Biomedicine & Pharmacotherapy, 141, 111832. https://doi.org/10.1016/j.biopha.2021.111832

    Article  CAS  Google Scholar 

  101. Desplats, P., Spencer, B., Coffee, E., Patel, P., Michael, S., Patrick, C., Adame, A., Rockenstein, E., & Masliah, E. (2011). α-synuclein sequesters Dnmt1 from the nucleus: A novel mechanism for epigenetic alterations in Lewy body diseases*. Journal of Biological Chemistry, 286, 9031–9037. https://doi.org/10.1074/jbc.C110.212589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guhathakurta, S., Bok, E., Evangelista, B. A., & Kim, Y. S. (2017). Deregulation of α-synuclein in Parkinson’s disease: Insight from epigenetic structure and transcriptional regulation of SNCA. Progress in Neurobiology, 154, 21–36. https://doi.org/10.1016/j.pneurobio.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schaffner, S. L., & Kobor, M. S. (2022). DNA methylation as a mediator of genetic and environmental influences on Parkinson’s disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Frontiers in Genetics, 13, 971298. https://doi.org/10.3389/fgene.2022.971298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, C., Chen, L., Zhang, M., Yang, Y., & Wong, G. (2020). PDmethDB: A curated Parkinson’s disease associated methylation information database. Computational and Structural Biotechnology Journal, 18, 3745–3749. https://doi.org/10.1016/j.csbj.2020.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pavlou, M. A., & Outeiro, T. F. (2017). Epigenetics in Parkinson’s disease. Advances in Experimental Medicine and Biology, 978, 363–390. https://doi.org/10.1007/978-3-319-53889-1_19

    Article  CAS  PubMed  Google Scholar 

  106. Cobos, S. N., Bennett, S. A., & Torrente, M. P. (2019). The impact of histone post-translational modifications in neurodegenerative diseases. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1865, 1982–1991. https://doi.org/10.1016/j.bbadis.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  107. Sugeno, N., Jäckel, S., Voigt, A., Wassouf, Z., Schulze-Hentrich, J., & Kahle, P. J. (2016). α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Scientific Reports, 6, 36328. https://doi.org/10.1038/srep36328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Song, C., Kanthasamy, A., Jin, H., Anantharam, V., & Kanthasamy, A. G. (2011). Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology, 32, 586–595. https://doi.org/10.1016/j.neuro.2011.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. El-Saiy, K. A., Sayed, R. H., El-Sahar, A. E., & Kandil, E. A. (2022). Modulation of histone deacetylase, the ubiquitin proteasome system, and autophagy underlies the neuroprotective effects of venlafaxine in a rotenone-induced Parkinson’s disease model in rats. Chemico-Biological Interactions, 354, 109841. https://doi.org/10.1016/j.cbi.2022.109841

    Article  CAS  PubMed  Google Scholar 

  110. Park, J., Lee, K., Kim, K., & Yi, S. J. (2022). The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduction and Targeted Therapy, 7, 217. https://doi.org/10.1038/s41392-022-01078-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y., Zhang, X., Chen, F., Chen, L., & Xie, J. (2021). Commentary: LncRNA-T199678 mitigates α-synuclein-induced dopaminergic neuron injury via miR-101-3p. Frontiers in Aging Neuroscience, 13, 650840. https://doi.org/10.3389/fnagi.2021.650840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, P., Sun, L., Zhao, X. L., Zhang, P., Zhao, X. M., & Zhang, J. (2014). PAR2-mediated epigenetic upregulation of α-synuclein contributes to the pathogenesis of Parkinson׳s disease. Brain Research, 1565, 82–89. https://doi.org/10.1016/j.brainres.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  113. Wu, Y. Y., & Kuo, H. C. (2020). Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. Journal of Biomedical Science, 27, 49. https://doi.org/10.1186/s12929-020-00636-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cai, Y., Yu, X., Hu, S., & Yu, J. (2009). A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics and Bioinformatics, 7, 147–154. https://doi.org/10.1016/S1672-0229(08)60044-3

    Article  CAS  PubMed  Google Scholar 

  115. Doxakis, E. (2010). Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. Journal of Biological Chemistry, 285, 12726–12734. https://doi.org/10.1074/jbc.M109.086827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bu, L. L., Xie, Y. Y., Lin, D. Y., Chen, Y., Jing, X. N., Liang, Y. R., Peng, S. D., Huang, K. X., & Tao, E. X. (2020). LncRNA-T199678 mitigates α-synuclein-induced dopaminergic neuron injury via miR-101-3p. Frontiers in Aging Neuroscience, 12, 599246. https://doi.org/10.3389/fnagi.2020.599246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lin, D., Li, Y., Huang, K., Chen, Y., Jing, X., Liang, Y., Bu, L., Peng, S., Zeng, S., Asakawa, T., & Tao, E. (2022). Exploration of the α-syn/T199678/miR-519-3p/KLF9 pathway in a PD-related α-syn pathology. Brain Research Bulletin, 186, 50–61. https://doi.org/10.1016/j.brainresbull.2022.05.012

    Article  CAS  PubMed  Google Scholar 

  118. Angelopoulou, E., Paudel, Y. N., & Piperi, C. (2019). miR-124 and Parkinson’s disease: A biomarker with therapeutic potential. Pharmacological Research, 150, 104515. https://doi.org/10.1016/j.phrs.2019.104515

    Article  CAS  PubMed  Google Scholar 

  119. He, S., Huang, L., Shao, C., Nie, T., Xia, L., Cui, B., Lu, F., Zhu, L., Chen, B., & Yang, Q. (2021). Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson’s disease. Translational Neurodegeneration, 10, 25. https://doi.org/10.1186/s40035-021-00249-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, W., Nguyen, L. T., Burlak, C., Chegini, F., Guo, F., Chataway, T., Ju, S., Fisher, O. S., Miller, D. W., Datta, D., Wu, F., Wu, C. X., Landeru, A., Wells, J. A., Cookson, M. R., Boxer, M. B., Thomas, C. J., Gai, W. P., Ringe, D., Petsko, G. A., & Hoang, Q. Q. (2016). Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 113, 9587–9592. https://doi.org/10.1073/pnas.1610099113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoo, J. M., Lin, Y., Heo, Y., & Lee, Y. H. (2022). Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Frontiers in Molecular Biosciences, 9, 959425. https://doi.org/10.3389/fmolb.2022.959425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bell, R., Castellana-Cruz, M., Nene, A., Thrush, R. J., Xu, C. K., Kumita, J. R., & Vendruscolo, M. (2023). Effects of N-terminal acetylation on the aggregation of disease-related α-synuclein variants. Journal of Molecular Biology, 435, 167825. https://doi.org/10.1016/j.jmb.2022.167825

    Article  CAS  PubMed  Google Scholar 

  123. Bell, R., Thrush, R. J., Castellana-Cruz, M., Oeller, M., Staats, R., Nene, A., Flagmeier, P., Xu, C. K., Satapathy, S., Galvagnion, C., Wilson, M. R., Dobson, C. M., Kumita, J. R., & Vendruscolo, M. (2022). N-Terminal acetylation of α-synuclein slows down its aggregation process and alters the morphology of the resulting aggregates. Biochemistry, 61, 1743–1756. https://doi.org/10.1021/acs.biochem.2c00104

    Article  CAS  PubMed  Google Scholar 

  124. Stefanis, L., Emmanouilidou, E., Pantazopoulou, M., Kirik, D., Vekrellis, K., & Tofaris, G. K. (2019). How is alpha-synuclein cleared from the cell? Journal of Neurochemistry, 150, 577–590. https://doi.org/10.1111/jnc.14704

    Article  CAS  PubMed  Google Scholar 

  125. Levine, P. M., Galesic, A., Balana, A. T., Mahul-Mellier, A. L., Navarro, M. X., De Leon, C. A., Lashuel, H. A., & Pratt, M. R. (2019). α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 116, 1511–1519. https://doi.org/10.1073/pnas.1808845116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brás, I. C., Xylaki, M., & Outeiro, T. F. (2020). Mechanisms of alpha-synuclein toxicity: An update and outlook. Progress in Brain Research, 252, 91–129. https://doi.org/10.1016/bs.pbr.2019.10.005

    Article  PubMed  Google Scholar 

  127. Shin, W. H., & Chung, K. C. (2020). Death-associated Protein Kinase 1 Phosphorylates α-Synuclein at Ser129 and Exacerbates Rotenone-induced Toxic Aggregation of α-Synuclein in Dopaminergic SH-SY5Y Cells. Experimental neurobiology, 29(3), 207–218. https://doi.org/10.5607/en20014

    Article  PubMed  PubMed Central  Google Scholar 

  128. Latham, J. A., & Dent, S. Y. (2007). Cross-regulation of histone modifications. Nature Structural & Molecular Biology, 14, 1017–1024. https://doi.org/10.1038/nsmb1307

    Article  CAS  Google Scholar 

  129. O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7, 688–693. https://doi.org/10.1038/sj.embor.7400731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cuevas-Sierra, A., Ramos-Lopez, O., Riezu-Boj, J. I., Milagro, F. I., & Martinez, J. A. (2019). Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Advances in Nutrition, 10, S17–S30. https://doi.org/10.1093/advances/nmy078

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nielsen, S. D., Pearson, N. M., & Seidler, K. (2021). The link between the gut microbiota and Parkinson’s Disease: A systematic mechanism review with focus on α-synuclein transport. Brain Research, 1769, 147609. https://doi.org/10.1016/j.brainres.2021.147609

    Article  CAS  PubMed  Google Scholar 

  132. Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167, 1469–1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hirayama, M., & Ohno, K. (2021). Parkinson’s disease and gut microbiota. Annals of Nutrition and Metabolism, 77(Suppl 2), 28–35. https://doi.org/10.1159/000518147

    Article  CAS  PubMed  Google Scholar 

  134. Kassan, M., Kwon, Y., Munkhsaikhan, U., Sahyoun, A. M., Ishrat, T., Galán, M., Gonzalez, A. A., Abidi, A. H., Kassan, A., & Ait-Aissa, K. (2023). Protective role of short-chain fatty acids against Ang- II-induced mitochondrial dysfunction in brain endothelial cells: A potential role of heme oxygenase 2. Antioxidants, 12, 160. https://doi.org/10.3390/antiox12010160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Colombo, A. V., Sadler, R. K., Llovera, G., Singh, V., Roth, S., Heindl, S., Sebastian, M. L., Verhoeven, A., Peters, F., Parhizkar, S., Kamp, F., Gomez de Aguero, M., MacPherson, A. J., Winkler, E., Herms, J., Benakis, C., Dichgans, M., Steiner, H., Giera, M., Haass, C., Tahirovic, S., & Liesz, A. (2021). Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife, 10, e59826. https://doi.org/10.7554/eLife.59826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang, X., Ai, P., He, X., Mo, C., Zhang, Y., Xu, S., Lai, Y., Qian, Y., & Xiao, Q. (2022). Parkinson’s disease is associated with impaired gut-blood barrier for short-chain fatty acids. Movement Disorders, 37, 1634–1643. https://doi.org/10.1002/mds.29063

    Article  CAS  PubMed  Google Scholar 

  137. Aho, V. T., Houser, M. C., Pereira, P. A. B., Chang, J., Rudi, K., Paulin, L., Hertzberg, V., Auvinen, P., Tansey, M. G., & Scheperjans, F. (2021). Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Molecular Neurodegeneration, 16(1), 6. https://doi.org/10.1186/s13024-021-00427-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen, S. J., Chen, C. C., Liao, H. Y., Lin, Y. T., Wu, Y. W., Liou, J. M., Wu, M. S., Kuo, C. H., & Lin, C. H. (2022). Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with Parkinson disease. Neurology, 98, e848–e858. https://doi.org/10.1212/WNL.0000000000013225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20, 145–155. https://doi.org/10.1038/nn.4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Quigley, E. M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Current Neurology and Neuroscience Reports, 17, 94. https://doi.org/10.1007/s11910-017-0802-6

    Article  CAS  PubMed  Google Scholar 

  141. Wakabayashi, K. (2020). Where and how alpha-synuclein pathology spreads in Parkinson’s disease. Neuropathology, 40, 415–425. https://doi.org/10.1111/neup.12691

    Article  CAS  PubMed  Google Scholar 

  142. Braak, H., & Del Tredici, K. (2016). Potential pathways of abnormal tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. Cold Spring Harbor Perspectives in Biology, 8, a023630. https://doi.org/10.1101/cshperspect.a023630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Keshavarzian, A., Engen, P., Bonvegna, S., & Cilia, R. (2020). The gut microbiome in Parkinson’s disease: A culprit or a bystander? Progress in Brain Research, 252, 357–450. https://doi.org/10.1016/bs.pbr.2020.01.004

    Article  PubMed  Google Scholar 

  144. Obata, Y., Furusawa, Y., & Hase, K. (2015). Epigenetic modifications of the immune system in health and disease. Immunology & Cell Biology, 93, 226–232. https://doi.org/10.1038/icb.2014.114

    Article  CAS  Google Scholar 

  145. Miro-Blanch, J., & Yanes, O. (2019). Epigenetic regulation at the interplay between gut microbiota and host metabolism. Frontiers in Genetics, 10, 638. https://doi.org/10.3389/fgene.2019.00638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Takahashi, K., Sugi, Y., Hosono, A., & Kaminogawa, S. (2009). Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. Journal of Immunology, 183, 6522–6529. https://doi.org/10.4049/jimmunol.0901271

    Article  CAS  Google Scholar 

  147. Fong, W., Li, Q., & Yu, J. (2020). Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene, 39, 4925–4943. https://doi.org/10.1038/s41388-020-1341-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Emamzadeh, F. N. (2016). Alpha-synuclein structure, functions, and interactions. Journal of Research in Medical Sciences, 21, 29. https://doi.org/10.4103/1735-1995.181989

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sarchione, A., Marchand, A., Taymans, J. M., & Chartier-Harlin, M. C. (2021). Alpha-Synuclein and Lipids: The Elephant in the Room? Cells, 10(9), 2452. https://doi.org/10.3390/cells10092452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schneider, J. S., Aras, R., Williams, C. K., Koprich, J. B., Brotchie, J. M., & Singh, V. (2019). GM1 ganglioside modifies α-synuclein toxicity and is neuroprotective in a rat α-synuclein model of Parkinson’s disease. Scientific Reports, 9, 8362. https://doi.org/10.1038/s41598-019-42847-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wu, G., Lu, Z. H., Seo, J. H., Alselehdar, S. K., DeFrees, S., & Ledeen, R. W. (2020). Mice deficient in GM1 manifest both motor and non-motor symptoms of Parkinson’s disease; successful treatment with synthetic GM1 ganglioside. Experimental Neurology, 329, 113284. https://doi.org/10.1016/j.expneurol.2020.113284

    Article  CAS  PubMed  Google Scholar 

  152. Ledeen, R., & Wu, G. (2018). Gangliosides of the nervous system. Methods in Molecular Biology, 1804, 19–55. https://doi.org/10.1007/978-1-4939-8552-4_2

    Article  CAS  PubMed  Google Scholar 

  153. Tsai, Y. T., Itokazu, Y., & Yu, R. K. (2016). GM1 ganglioside is involved in epigenetic activation loci of neuronal cells. Neurochemical Research, 41, 107–115. https://doi.org/10.1007/s11064-015-1742-7

    Article  CAS  PubMed  Google Scholar 

  154. Itokazu, Y., Fuchigami, T., Morgan, J. C., & Yu, R. K. (2021). Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Molecular Therapy, 29, 3059–3071. https://doi.org/10.1016/j.ymthe.2021.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Qiao, H. H., Zhu, L. N., Wang, Y., Hui, J. L., Xie, W. B., Liu, C., Chen, L., & Qiu, P. M. (2019). Implications of alpha-synuclein nitration at tyrosine 39 in methamphetamine-induced neurotoxicity in vitro and in vivo. Neural Regeneration Research, 14, 319–327. https://doi.org/10.4103/1673-5374.244795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fellner, L., Irschick, R., Schanda, K., Reindl, M., Klimaschewski, L., Poewe, W., Wenning, G. K., & Stefanova, N. (2013). Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia, 61, 349–360. https://doi.org/10.1002/glia.22437

    Article  PubMed  PubMed Central  Google Scholar 

  157. Heidari, A., Yazdanpanah, N., & Rezaei, N. (2022). The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. Journal of Neuroinflammation, 19, 135. https://doi.org/10.1186/s12974-022-02496-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Neal, M., & Richardson, J. R. (2018). Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1864, 432–443. https://doi.org/10.1016/j.bbadis.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  159. Buonfiglioli, A., Efe, I. E., Guneykaya, D., Ivanov, A., Huang, Y., Orlowski, E., Krüger, C., Deisz, R. A., Markovic, D., Flüh, C., Newman, A. G., Schneider, U. C., Beule, D., Wolf, S. A., Dzaye, O., Gutmann, D. H., Semtner, M., Kettenmann, H., & Lehnardt, S. (2019). Let-7 MicroRNAs regulate microglial function and suppress glioma growth through toll-like receptor 7. Cell Reports, 29, 3460–3471.e7. https://doi.org/10.1016/j.celrep.2019.11.029

    Article  CAS  PubMed  Google Scholar 

  160. Ding, X. M., Zhao, L. J., Qiao, H. Y., Wu, S. L., & Wang, X. H. (2019). Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chemico-Biological Interactions, 307, 73–81. https://doi.org/10.1016/j.cbi.2019.04.017

    Article  CAS  PubMed  Google Scholar 

  161. Wang, S., Zhang, X., Guo, Y., Rong, H., & Liu, T. (2017). The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget, 8, 24449–24456. https://doi.org/10.18632/oncotarget.15511

    Article  PubMed  PubMed Central  Google Scholar 

  162. Matsumoto, L., Takuma, H., Tamaoka, A., Kurisaki, H., Date, H., Tsuji, S., & Iwata, A. (2010). CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS ONE, 5, e15522. https://doi.org/10.1371/journal.pone.0015522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. McGregor, B. A., Schommer, J., Guo, K., Raihan, M. O., Ghribi, O., Hur, J., & Porter, J. E. (2021). Alpha-synuclein-induced DNA methylation and gene expression in microglia. Neuroscience, 468, 186–198. https://doi.org/10.1016/j.neuroscience.2021.05.027

    Article  CAS  PubMed  Google Scholar 

  164. Henderson, A. R., Wang, Q., Meechoovet, B., Siniard, A. L., Naymik, M., De Both, M., Huentelman, M. J., Caselli, R. J., Driver-Dunckley, E., & Dunckley, T. (2021). DNA methylation and expression profiles of whole blood in Parkinson’s disease. Frontiers in Genetics, 12, 640266. https://doi.org/10.3389/fgene.2021.640266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jowaed, A., Schmitt, I., Kaut, O., & Wüllner, U. (2010). Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. Journal of Neuroscience, 30, 6355–6359. https://doi.org/10.1523/JNEUROSCI.6119-09.2010

    Article  CAS  PubMed  Google Scholar 

  166. Kaut, O., Schmitt, I., Stahl, F., Fröhlich, H., Hoffmann, P., Gonzalez, F. J., & Wüllner, U. (2022). Epigenome-wide analysis of DNA methylation in Parkinson’s disease cortex. Life (Basel), 12, 502. https://doi.org/10.3390/life12040502

    Article  CAS  PubMed  Google Scholar 

  167. Toker, L., Tran, G. T., Sundaresan, J., Tysnes, O. B., Alves, G., Haugarvoll, K., Nido, G. S., Dölle, C., & Tzoulis, C. (2021). Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Molecular Neurodegeneration, 16, 31. https://doi.org/10.1186/s13024-021-00450-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Harrison, I. F., Crum, W. R., Vernon, A. C., & Dexter, D. T. (2015). Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors. British Journal of Pharmacology, 172, 4200–4215. https://doi.org/10.1111/bph.13208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Harrison, I. F., Smith, A. D., & Dexter, D. T. (2018). Pathological histone acetylation in Parkinson’s disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Neuroscience Letters, 666, 48–57. https://doi.org/10.1016/j.neulet.2017.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Su, X., Chu, Y., Kordower, J. H., Li, B., Cao, H., Huang, L., Nishida, M., Song, L., Wang, D., & Federoff, H. J. (2015). PGC−1α promoter methylation in Parkinson’s disease. PLoS ONE, 10, e0134087. https://doi.org/10.1371/journal.pone.0134087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Griñán-Ferré, C., Bellver-Sanchis, A., Izquierdo, V., Corpas, R., Roig-Soriano, J., Chillón, M., Andres-Lacueva, C., Somogyvári, M., Sőti, C., Sanfeliu, C., & Pallàs, M. (2021). The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Research Reviews, 67, 101271. https://doi.org/10.1016/j.arr.2021.101271

    Article  CAS  PubMed  Google Scholar 

  172. Thiruvengadam, M., Venkidasamy, B., Subramanian, U., Samynathan, R., Ali Shariati, M., Rebezov, M., Girish, S., Thangavel, S., Dhanapal, A. R., Fedoseeva, N., Lee, J., & Chung, I. M. (2021). Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants, 10, 1859. https://doi.org/10.3390/antiox10121859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417, 1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  174. Flønes, I. H., & Tzoulis, C. (2022). Mitochondrial respiratory chain dysfunction—A hallmark pathology of idiopathic Parkinson’s disease? Frontiers in Cell and Developmental Biology, 10, 874596. https://doi.org/10.3389/fcell.2022.874596

    Article  PubMed  PubMed Central  Google Scholar 

  175. Giannoccaro, M. P., La Morgia, C., Rizzo, G., & Carelli, V. (2017). Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease. Movement Disorders, 32, 346–363. https://doi.org/10.1002/mds.26966

    Article  PubMed  Google Scholar 

  176. Arduíno, D. M., Esteves, A. R., Swerdlow, R. H., & Cardoso, S. M. (2015). A cybrid cell model for the assessment of the link between mitochondrial deficits and sporadic Parkinson’s disease. Methods in Molecular Biology, 1265, 415–424. https://doi.org/10.1007/978-1-4939-2288-8_31

    Article  CAS  PubMed  Google Scholar 

  177. Calì, T., Ottolini, D., & Brini, M. (2011). Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. BioFactors, 37, 228–240. https://doi.org/10.1002/biof.159

    Article  CAS  PubMed  Google Scholar 

  178. Guardia-Laguarta, C., Area-Gomez, E., Rüb, C., Liu, Y., Magrané, J., Becker, D., Voos, W., Schon, E. A., & Przedborski, S. (2014). α-Synuclein is localized to mitochondria-associated ER membranes. The Journal of Neuroscience : the official journal of the Society for Neuroscience, 34(1), 249–259. https://doi.org/10.1523/JNEUROSCI.2507-13.2014

  179. Rcom-H’cheo-Gauthier, A., Goodwin, J., & Pountney, D. L. (2014). Interactions between calcium and alpha-synuclein in neurodegeneration. Biomolecules, 4, 795–811. https://doi.org/10.3390/biom4030795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Melo, T. Q., Copray, S. J., & Ferrari, M. F. (2018). Alpha-synuclein toxicity on protein quality control, mitochondria and endoplasmic reticulum. Neurochemical Research, 43, 2212–2223. https://doi.org/10.1007/s11064-018-2673-x

    Article  CAS  PubMed  Google Scholar 

  181. Apicco, D. J., Shlevkov, E., Nezich, C. L., Tran, D. T., Guilmette, E., Nicholatos, J. W., Bantle, C. M., Chen, Y., Glajch, K. E., Abraham, N. A., Dang, L. T., Kaynor, G. C., Tsai, E. A., Nguyen, K. H., Groot, J., Liu, Y., Weihofen, A., Hurt, J. A., Runz, H., & Hirst, W. D. (2021). The Parkinson’s disease-associated gene ITPKB protects against α-synuclein aggregation by regulating ER-to-mitochondria calcium release. Proceedings of the National Academy of Sciences of the United States of America, 118(1), e2006476118. https://doi.org/10.1073/pnas.2006476118

    Article  CAS  PubMed  Google Scholar 

  182. Ramis, R., Ortega-Castro, J., Vilanova, B., Adrover, M., & Frau, J. (2021). Cu2+, Ca2+, and methionine oxidation expose the hydrophobic α-synuclein NAC domain. International Journal of Biological Macromolecules, 169, 251–263. https://doi.org/10.1016/j.ijbiomac.2020.12.018

    Article  CAS  PubMed  Google Scholar 

  183. Betzer, C., Lassen, L. B., Olsen, A., Kofoed, R. H., Reimer, L., Gregersen, E., Zheng, J., Calì, T., Gai, W. P., Chen, T., Moeller, A., Brini, M., Fu, Y., Halliday, G., Brudek, T., Aznar, S., Pakkenberg, B., Andersen, J. P., & Jensen, P. H. (2018). Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Reports, 19, e44617. https://doi.org/10.15252/embr.201744617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Diepenbroek, M., Casadei, N., Esmer, H., Saido, T. C., Takano, J., Kahle, P. J., Nixon, R. A., Rao, M. V., Melki, R., Pieri, L., Helling, S., Marcus, K., Krueger, R., Masliah, E., Riess, O., & Nuber, S. (2014). Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice. Human Molecular Genetics, 23, 3975–3989. https://doi.org/10.1093/hmg/ddu112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Patil, V., Cuenin, C., Chung, F., Aguilera, J. R. R., Fernandez-Jimenez, N., Romero-Garmendia, I., Bilbao, J. R., Cahais, V., Rothwell, J., & Herceg, Z. (2019). Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Research, 47, 10072–10085. https://doi.org/10.1093/nar/gkz762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

Consejo Nacional de Ciencia y Tecnología, México, Grant No. 1028543 to A.K.L.L. Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Jalisco, México, Research Grant No. P3E/2022/266150 to S.J.L.P.

Author information

Authors and Affiliations

Authors

Contributions

S.J.L.P. and A.K.L.L. contributed to the study conception and design. Material preparation, data collection and analysis were performed by A.K.L.L. and J.L.C.C. The first draft of the manuscript was written by A.K.L.L. and S.J.L.P. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Silvia Josefina López-Pérez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomeli-Lepe, A.K., Castañeda-Cabral, J.L. & López-Pérez, S.J. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 81, 427–442 (2023). https://doi.org/10.1007/s12013-023-01154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01154-z

Keywords

Navigation