Skip to main content
Log in

Ceruloplasmin Deficiency Impaired Brain Iron Metabolism and Behavior in Mice

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Iron accumulation is an important cause of various brain diseases. As a ferroxidase, ceruloplasmin (Cp) plays a key role in iron homeostasis and its abnormal activity leads to iron accumulation. However, the detailed biological function of Cp in brain iron homeostasis needs to be investigated. In this study, Cp knockout mice were prepared and the changes in iron content and protein expression related to iron metabolism were detected. The results showed that iron accumulation occurred in multiple tissues and organs of Cp knockout mice, but there was no obvious change in brain tissues. However, Cp deficiency affected the expression of many iron metabolism-related proteins in midbrain, such as DMT1+IRE, heavy chain ferritin (H-ferritin) and light chain ferritin (L-ferritin). Cp deficiency also impaired the behavioral ability of mice, including weakened exercise ability and reduced motor coordination. In vitro cell experiment indicated that the sensitivity of Cp knockout neuron and astrocyte to hypoxia was higher than that of wild type, which means Cp deficiency leads to the damage of cell self-protection. All these results confirm that Cp exerts a protective effect on the brain by regulating iron metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, G. J., & Frazer, D. M. (2017). Current understanding of iron homeostasis. The American Journal of Clinical Nutrition, 106(Suppl 6), 1559S–1566S.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ganz, T. (2013). Systemic iron homeostasis. Physiological Reviews, 93(4), 1721–1741.

    Article  CAS  PubMed  Google Scholar 

  3. Lasocki, S., Gaillard, T., & Rineau, E. (2014). Iron is essential for living! Critical Care, 18(6), 678.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience, 5(11), 863–873.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, J. L., Fan, Y. G., Yang, Z. S., Wang, Z. Y., & Guo, C. (2018). Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Frontiers in Neuroscience, 12, 632.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, J., & Pantopoulos, K. (2011). Regulation of cellular iron metabolism. Biochemical Journal, 434(3), 365–381.

    Article  CAS  PubMed Central  Google Scholar 

  7. Yiannikourides, A., & Latunde-Dada, G. O. (2019). A short review of iron metabolism and pathophysiology of iron disorders. Medicines (Basel), 6(3), 85.

    Article  CAS  Google Scholar 

  8. Rouault, T. A. (2013). Iron metabolism in the CNS: implications for neurodegenerative diseases. Nature Reviews Neuroscience, 14(8), 551–564.

    Article  CAS  PubMed  Google Scholar 

  9. Skjørringe, T., Burkhart, A., Johnsen, K. B., & Moos, T. (2015). Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Frontiers in Molecular Neuroscience, 8, 19.

    PubMed  PubMed Central  Google Scholar 

  10. Cheli, V. T., Santiago González, D. A., Marziali, L. N., Zamora, N. N., Guitart, M. E., Spreuer, V., Pasquini, J. M., & Paez, P. M. (2018). The divalent metal transporter 1 (DMT1) is required for iron uptake and normal development of oligodendrocyte progenitor cells. The Journal of Neuroscience, 38(43), 9142–9159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zarjou, A., Black, L. M., McCullough, K. R., Hull, T. D., Esman, S. K., Boddu, R., Varambally, S., Chandrashekar, D. S., Feng, W., Arosio, P., Poli, M., Balla, J., & Bolisetty, S. (2019). Ferritin light chain confers protection against sepsis-induced inflammation and organ injury. Frontiers in Immunology, 10, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ward, D. M., & Kaplan, J. (2012). Ferroportin-mediated iron transport: expression and regulation. Biochimica et Biophysica Acta, 1823(9), 1426–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hellman, N. E., & Gitlin, J. D. (2002). Ceruloplasmin metabolism and function. Annual Review of Nutrition, 22, 439–458.

    Article  CAS  PubMed  Google Scholar 

  14. Song, D., & Dunaief, J. L. (2013). Retinal iron homeostasis in health and disease. Frontiers in Aging Neuroscience, 5, 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kristinsson, J., Snaedal, J., Tórsdóttir, G., & Jóhannesson, T. (2012). Ceruloplasmin and iron in Alzheimer’s disease and Parkinson’s disease: a synopsis of recent studies. Neuropsychiatric Disease and Treatment, 8, 515–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, Y. S., Zhang, L. H., Yu, P. P., Gou, Y. J., Zhao, J., You, L. H., Wang, Z. Y., Zheng, X., Yan, L. J., Yu, P., & Chang, Y. Z. (2018). Ceruloplasmin, a potential therapeutic agent for Alzheimer’s disease. Antioxidants and Redox Signaling, 28(14), 1323–1337.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto, K., Yoshida, K., Miyagoe, Y., Ishikawa, A., Hanaoka, K., Nomoto, S., Kaneko, K., Ikeda, S., & Takeda, S. (2002). Quantitative evaluation of expression of iron-metabolism genes in ceruloplasmin-deficient mice. Biochimica et Biophysica Acta, 1588(3), 195–202.

    Article  CAS  PubMed  Google Scholar 

  18. Menalled, L. B., Patry, M., Ragland, N., Lowden, P. A., Goodman, J., Minnich, J., Zahasky, B., Park, L., Leeds, J., Howland, D., Signer, E., Tobin, A. J., & Brunner, D. (2010). Comprehensive behavioral testing in the R6/2 mouse model of Huntington’s disease shows no benefit from CoQ10 or minocycline. PLoS One, 5(3), e9793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C., & Gould, T. D. (2012). The mouse forced swim test. Journal of Visualized Experiments, 59, e3638.

    Google Scholar 

  20. Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., & Gould, T. D. (2012). The tail suspension test. Journal of Visualized Experiments, 59, e3769.

    Google Scholar 

  21. Kim, H. J., & Magrané, J. (2011). Isolation and culture of neurons and astrocytes from the mouse brain cortex. Methods in Molecular Biology, 793, 63–75.

    Article  CAS  PubMed  Google Scholar 

  22. Thirupathi, A., & Chang, Y. Z. (2019). Brain iron metabolism and CNS diseases. Advances in Experimental Medicine and Biology, 1173, 1–19.

    Article  CAS  PubMed  Google Scholar 

  23. Winter, W. E., Bazydlo, L. A., & Harris, N. S. (2014). The molecular biology of human iron metabolism. Laboratory Medicine, 45(2), 92–102.

    Article  PubMed  Google Scholar 

  24. Gao, G., Li, J., Zhang, Y., & Chang, Y. Z. (2019). Cellular iron metabolism and regulation. Advances in Experimental Medicine and Biology, 1173, 21–32.

    Article  CAS  PubMed  Google Scholar 

  25. Collins, J. F. (2018). Ferroxidases and mammalian iron homeostasis: novel insight into a physiological phenomenon first described more than half a century ago. Cellular and Molecular Gastroenterology and Hepatology, 6(4), 470–471.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vashchenko, G., & MacGillivray, R. T. (2013). Multi-copper oxidases and human iron metabolism. Nutrients, 5(7), 2289–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harris, Z. L., Durley, A. P., Man, T. K., & Gitlin, J. D. (1999). Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proceedings of the National Academy of Sciences of the United States of America, 96(19), 10812–10817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ryan, F., Zarruk, J. G., Lößlein, L., & David, S. (2019). Ceruloplasmin plays a neuroprotective role in cerebral ischemia. Frontiers in Neuroscience, 12, 988.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qian, Z. M., & Ke, Y. (2001). Rethinking the role of ceruloplasmin in brain iron metabolism. Brain Research Reviews, 35(3), 287–294.

    Article  CAS  PubMed  Google Scholar 

  30. Patel, B. N., Dunn, R. J., Jeong, S. Y., Zhu, Q., Julien, J. P., & David, S. (2002). Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. The Journal of Neuroscience, 22(15), 6578–6586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeong, S. Y., & David, S. (2006). Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice. The Journal of Neuroscience, 26(38), 9810–9819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaneko, K., Hineno, A., Yoshida, K., & Ikeda, S. (2008). Increased vulnerability to rotenone-induced neurotoxicity in ceruloplasmin-deficient mice. Neuroscience Letters, 446(1), 56–58.

    Article  CAS  PubMed  Google Scholar 

  33. Texel, S. J., Xu, X., & Harris, Z. L. (2008). Ceruloplasmin in neurodegenerative diseases. Biochemical Society Transactions, 36(Pt 6), 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, B., & Wang, X. P. (2019). Does ceruloplasmin defend against neurodegenerative diseases? Current Neuropharmacology, 17(6), 539–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zanardi, A., Conti, A., Cremonesi, M., D’Adamo, P., Gilberti, E., Apostoli, P., Cannistraci, C. V., Piperno, A., David, S., & Alessio, M. (2018). Ceruloplasmin replacement therapy ameliorates neurological symptoms in a preclinical model of aceruloplasminemia. EMBO Molecular Medicine, 10(1), 91–106.

    Article  CAS  PubMed  Google Scholar 

  36. Hahn, P., Qian, Y., Dentchev, T., Chen, L., Beard, J., Harris, Z. L., & Dunaief, J. L. (2004). Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 101(38), 13850–13855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuqua, B. K., Lu, Y., Frazer, D. M., Darshan, D., Wilkins, S. J., Dunn, L., Loguinov, A. V., Kogan, S. C., Matak, P., Chen, H., Dunaief, J. L., Vulpe, C. D., & Anderson, G. J. (2018). Severe iron metabolism defects in mice with double knockout of the multicopper ferroxidases hephaestin and ceruloplasmin. Cellular and Molecular Gastroenterology and Hepatology, 6(4), 405–427.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu, E., Chen, M., Zheng, J., Maimaitiming, Z., Zhong, T., & Chen, H. (2018). Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis. Biochemical and Biophysical Research Communications, 503(3), 1905–1910.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, J., Chen, M., Liu, G., Xu, E., & Chen, H. (2018). Ablation of hephaestin and ceruloplasmin results in iron accumulation in adipocytes and type 2 diabetes. FEBS Letters, 592(3), 394–401.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, L., Hadziahmetovic, M., Wang, C., Xu, X., Song, Y., Jinnah, H. A., Wodzinska, J., Iacovelli, J., Wolkow, N., Krajacic, P., Weissberger, A. C., Connelly, J., Spino, M., Lee, M. K., Connor, J., Giasson, B., Harris, Z. L., & Dunaief, J. L. (2015). Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. Journal of Neurochemistry, 135(5), 958–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, J., Jiang, R., Chen, M., Maimaitiming, Z., Wang, J., Anderson, G. J., Vulpe, C. D., Dunaief, J. L., & Chen, H. (2018). Multi-copper ferroxidase-deficient mice have increased brain iron concentrations and learning and memory deficits. Journal of Nutrition, 148(4), 643–649.

    Article  Google Scholar 

  42. Chen, Z., Jiang, R., Chen, M., Zheng, J., Chen, M., Braidy, N., Liu, S., Liu, G., Maimaitiming, Z., Shen, T., Dunaief, J. L., Vulpe, C. D., Anderson, G. J., & Chen, H. (2019). Multi-copper ferroxidase deficiency leads to iron accumulation and oxidative damage in astrocytes and oligodendrocytes. Scientific Reports, 9(1), 9437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zanardi, A., & Alessio, M. (2021). Ceruloplasmin deamidation in neurodegeneration: from loss to gain of function. International Journal of Molecular Sciences, 22(2), 663.

    Article  CAS  PubMed Central  Google Scholar 

  44. Lei, P., Ayton, S., & Bush, A. I. (2021). The essential elements of Alzheimer’s disease. Journal of Biological Chemistry, 296, 100105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by Key R&D Program of Hebei Province (No. 18277752D).

Author information

Authors and Affiliations

Authors

Contributions

L.N. and X.G. were responsible for experimental design, data analysis, and manuscript writing. L.N. conducted most of the experiments including tissue genotyping, iron content measurement, iron metabolism-related protein determination, behavioral tests, and in vitro cell experiment. Y.Z. assisted in behavioral experiment. L.L. was involved in the iron content measurement. A.S. was involved in data analysis and manuscript writing. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Lijing Niu or Xiaoqiang Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Zhou, Y., Lu, L. et al. Ceruloplasmin Deficiency Impaired Brain Iron Metabolism and Behavior in Mice. Cell Biochem Biophys 80, 385–393 (2022). https://doi.org/10.1007/s12013-022-01061-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01061-9

Keywords

Navigation