Skip to main content
Log in

Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data presented and discussed are contained within the manuscript. All the data and materials are available from V.N.

References

  1. Wohnhaas, C. T., Gindele, J. A., Kiechle, T., Shen, Y., Leparc, G. G., & Stierstorfer, B., et al. (2021). Cigarette Smoke specifically affects small airway epithelial cell populations and triggers the expansion of inflammatory and squamous differentiation associated basal cells. International Journal of Molecular Sciences, 22, 14.

    Article  Google Scholar 

  2. Tanoue, L. T. (2021). Women and lung cancer. Clinics in Chest Medicine, 42(3), 467–82.

    Article  PubMed  Google Scholar 

  3. Suryadevara, V., Ramchandran, R., Kamp, D. W., & Natarajan, V. (2020). Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways. International Journal of Molecular Sciences, 21, 12.

    Article  Google Scholar 

  4. Masunaga, A., Takemura, T., Ichiyasu, H., Migiyama, E., Horio, Y., & Saeki, S., et al. (2021). Pathological and clinical relevance of selective recruitment of Langerhans cells in the respiratory bronchioles of smokers. Respiratory Investigation, 59(4), 513–21.

    Article  PubMed  Google Scholar 

  5. Chakraborty, R. K., Basit, H., & Sharma, S. (2021). Desquamative Interstitial Pneumonia. Treasure Island (FL): StatPearls.

    Google Scholar 

  6. Shadrach, B. J., Agnihotri, D., Goel, R., & Haran, H. (2021). Pulmonary langerhans cell histiocytosis in a young non-smoking female—too many rituals spoil the lung. Acta Biomedica, 92(S1), e2021138.

    PubMed  PubMed Central  Google Scholar 

  7. Maugeri, G., D’Amico, A. G., Rasa, D. M., La Cognata, V., Saccone, S., & Federico, C., et al. (2017). Nicotine promotes blood retinal barrier damage in a model of human diabetic macular edema. Toxicology In Vitro, 44, 182–9.

    Article  CAS  PubMed  Google Scholar 

  8. Han, X., Cai, C., Huang, J., Li, Q., Huang, L., & Xuan, Q., et al. (2021). The intervention effect of nicotine on cervical fibroblast-myofibroblast differentiation in lipopolysaccharide-induced preterm birth model through activating the TGF-beta1/Smad3 pathway. Biomedicine Pharmacotherapy, 134, 111135.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, X., Zhang, Y., Li, H., Jin, Y., Zhao, L., & Wang, X. (2021). Nicotine prevents in vivo Abeta toxicity in Caenorhabditis elegans via SKN-1. Neuroscience Letter, 761, 136114.

    Article  CAS  Google Scholar 

  10. Flenley, D. C., Downing, I., & Greening, A. P. (1986). The pathogenesis of emphysema. Bulletin Europeen de Physiopathologie Respiratoire, 22(1), 245s–52s.

    CAS  PubMed  Google Scholar 

  11. Huang, L. S., Kotha, S. R., Avasarala, S., VanScoyk, M., Winn, R. A., & Pennathur, A., et al. (2020). Lysocardiolipin acyltransferase regulates NSCLC cell proliferation and migration by modulating mitochondrial dynamics. Journal of Biological Chemistry, 295(38), 13393–406.

    Article  CAS  Google Scholar 

  12. Aravamudan, B., Thompson, M., Sieck, G. C., Vassallo, R., Pabelick, C. M., & Prakash, Y. S. (2017). Functional effects of cigarette smoke-induced changes in airway smooth muscle mitochondrial morphology. Journal of Cellular Physiology, 232(5), 1053–68.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, W. C., Qu, J., Xie, S. Y., Sun, Y., & Yao, H. W. (2021). Mitochondrial dysfunction in chronic respiratory diseases: implications for the pathogenesis and potential therapeutics. Oxidative Medicine and Cellular Longevity, 2021, 5188306.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lin, J., Taggart, M., Borthwick, L., Fisher, A., Brodlie, M., & Sassano, M. F., et al. (2021). Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Scientific Reports, 11(1), 9643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, Z., Knudsen, N. H., Wang, G., Qiu, W., Naing, Z. Z. C., & Bai, Y., et al. (2017). Genetic control of fatty acid beta-oxidation in chronic obstructive pulmonary disease. The American Journal of Respiratory Cell and Molecular Biology, 56(6), 738–48.

    Article  CAS  PubMed  Google Scholar 

  16. Solanki, H. S., Advani, J., Khan, A. A., Radhakrishnan, A., Sahasrabuddhe, N. A., & Pinto, S. M., et al. (2017). Chronic cigarette smoke mediated global changes in lung mucoepidermoid cells: a phosphoproteomic analysis. OMICS., 21(8), 474–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cano, M., Datta, S., Wang, L., Liu, T., Flores-Bellver, M., & Sachdeva, M., et al.(2021). Nrf2 deficiency decreases NADPH from impaired IDH shuttle and pentose phosphate pathway in retinal pigmented epithelial cells to magnify oxidative stress-induced mitochondrial dysfunction. Aging Cell, 20(8), e13444.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Suryadevara, V., Huang, L., Kim, S. J., Cheresh, P., Shaaya, M., & Bandela, M., et al. (2019). Role of phospholipase D in bleomycin-induced mitochondrial reactive oxygen species generation, mitochondrial DNA damage, and pulmonary fibrosis. The American Journal of Physiology Lung Cellular and Molecular Physiology, 317(2), L175–L87.

    Article  CAS  PubMed  Google Scholar 

  19. Brown, Z. J., Fu, Q., Ma, C., Kruhlak, M., Zhang, H., & Luo, J., et al. (2018). Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4(+) T cell apoptosis promoting HCC development. Cell Death and Diseases, 9(6), 620.

    Article  Google Scholar 

  20. Anzmann A. F., Sniezek O. L., Pado A., Busa V., Vaz F. M., Kreimer S. D., et al. (2021). Diverse mitochondrial abnormalities in a new cellular model of TAFFAZZIN deficiency are remediated by cardiolipin-interacting small molecules. The Journal of Biological Chemistry, 297(3).

  21. Mejia, E. M., Zegallai, H., Bouchard, E. D., Banerji, V., Ravandi, A., & Hatch, G. M. (2018). Expression of human monolysocardiolipin acyltransferase-1 improves mitochondrial function in Barth syndrome lymphoblasts. The Journal of Biological Chemistry, 293(20), 7564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garlid, A. O., Schaffer, C. T., Kim, J., Bhatt, H., Guevara-Gonzalez, V., & Ping, P. (2020). TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene, 726, 144148.

    Article  CAS  PubMed  Google Scholar 

  23. Yari, H., Ganjalikhany, M. R., & Sadegh, H. (2015). In silico investigation of new binding pocket for mitogen activated kinase kinase (MEK): Development of new promising inhibitors. Computational Biology and Chemistry, 59 Pt A, 185–98.

    Article  PubMed  Google Scholar 

  24. Cloonan, S. M., & Choi, A. M. K. (2016). Mitochondria in lung disease. The Journal of Clinical Investigation, 126(3), 809–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang, L. S., Mathew, B., Li, H., Zhao, Y., Ma, S. F., & Noth, I., et al. (2014). The mitochondrial cardiolipin remodeling enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. The American Journal of Respiratory and Critical Care Medicine, 189(11), 1402–15.

    Article  CAS  PubMed  Google Scholar 

  26. Ware, L. B., Landeck, M., Koyama, T., Zhao, Z., Singer, J., & Kern, R., et al. (2014). A randomized trial of the effects of nebulized albuterol on pulmonary edema in brain-dead organ donors. The American Journal of Transplantation, 14(3), 621–8.

    Article  CAS  PubMed  Google Scholar 

  27. Testai, F. D., Xu, H. L., Kilkus, J., Suryadevara, V., Gorshkova, I., & Berdyshev, E., et al. (2015). Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. The Journal of Neuroscience Research, 93(5), 796–805.

    Article  CAS  PubMed  Google Scholar 

  28. Fu, P., Epshtein, Y., Ramchandran, R., Mascarenhas, J. B., Cress, A. E., & Jacobson, J., et al. (2021). Essential role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, ROS generation and lung endothelial barrier loss. Scientific Report, 11(1), 17546.

    Article  CAS  Google Scholar 

  29. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry Physiology, 37(8), 911–7.

    Article  CAS  PubMed  Google Scholar 

  30. Schmid, H. H., Schmid, P. C., & Natarajan, V. (1990). N-acylated glycerophospholipids and their derivatives. Progress in Lipid Research, 29(1), 1–43.

    Article  CAS  PubMed  Google Scholar 

  31. Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66(2), 375–400.

    Article  CAS  Google Scholar 

  32. Suryadevara, V., Fu, P., Ebenezer, D. L., Berdyshev, E., Bronova, I. A., & Huang, L. S., et al. (2018). Sphingolipids in ventilator induced lung injury: role of sphingosine-1-phosphate lyase. International Journal of J Molecular Sciences, 19, 1.

    Google Scholar 

  33. Huang, L. S., Jiang, P., Feghali-Bostwick, C., Reddy, S. P., Garcia, J. G. N., & Natarajan, V. (2017). Lysocardiolipin acyltransferase regulates TGF-beta mediated lung fibroblast differentiation. Free Radical Biology and Medicine, 112, 162–73.

    Article  CAS  PubMed  Google Scholar 

  34. de Groot, P. M., Wu, C. C., Carter, B. W., & Munden, R. F. (2018). The epidemiology of lung cancer. Translational Lung Cancer Research, 7(3), 220–33.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bandela, M., Letsiou, E., Natarajan, V., Ware, L. B., Garcia, J. G., Singla, S., & Dudek, S. M. (2021). Cortactin ModulatesLung Endothelial Apoptosis Induced by Cigarette Smoke. Cells, 10(11), 2869.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jezek, J., Cooper, K. F., & Strich, R. (2018). Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants, 7, 1.

    Article  Google Scholar 

  37. Sakhatskyy, P., Gabino Miranda, G. A., Newton, J., Lee, C. G., Choudhary, G., & Vang, A., et al. (2014). Cigarette smoke-induced lung endothelial apoptosis and emphysema are associated with impairment of FAK and eIF2alpha. Microvascular Research, 94, 80–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jassem, E., Szymanowska, A., Sieminska, A., & Jassem, J. (2009). Smoking and lung cancer. Pneumonologia Alergologia Polska, 77(5), 469–73.

    Google Scholar 

  39. Vij, N., Chandramani-Shivalingappa, P., Van Westphal, C., Hole, R., & Bodas, M. (2018). Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Americal Journal of Physiology Cell Physiology, 314(1), C73–C87.

    Article  Google Scholar 

  40. Sundar, I. K., Mullapudi, N., Yao, H., Spivack, S. D., & Rahman, I. (2011). Lung cancer and its association with chronic obstructive pulmonary disease: update on nexus of epigenetics. Current Opinion in Pulmonary Medicine 17(4), 279–85.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maremanda, K. P., Sundar, I. K., & Rahman, I. (2019). Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicology and Applied Pharmacology, 385, 114788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Araya, J., Tsubouchi, K., Sato, N., Ito, S., Minagawa, S., & Hara, H., et al. (2019). PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy, 15(3), 510–26.

    Article  CAS  PubMed  Google Scholar 

  43. Aghapour, M., Remels, A. H. V., Pouwels, S. D., Bruder, D., Hiemstra, P. S., & Cloonan, S. M., et al. (2020). Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. The American Journal of Physiology Lung Cellular and Molecular Physiology, 318(1), L149–L64.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, H., Li, Z., Dong, L., Wu, Y., Shen, H., & Chen, Z. (2019). Lipid metabolism in chronic obstructive pulmonary disease. The International Journal of Chronic Obstructive Pulmonary Disease, 14, 1009–18.

    Article  CAS  PubMed  Google Scholar 

  45. Koike, K., Berdyshev, E. V., Bowler, R. P., Scruggs, A. K., Cao, D., & Schweitzer, K. S., et al. (2018). Bioactive sphingolipids in the pathogenesis of chronic obstructive pulmonary disease. The Annals of the American Thoracic Society, 15(Suppl 4), S249–S52.

    Article  PubMed  Google Scholar 

  46. Petrache, I., Natarajan, V., Zhen, L., Medler, T. R., Richter, A. T., & Cho, C., et al. (2005). Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nature Medicine, 11(5), 491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren, M., Phoon, C. K., & Schlame, M. (2014). Metabolism and function of mitochondrial cardiolipin. Progress in Lipid Research, 55, 1–16.

    Article  CAS  PubMed  Google Scholar 

  48. Birk, A. V., Chao, W. M., Bracken, C., Warren, J. D., & Szeto, H. H. (2014). Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. British Journal of Pharmacology, 171(8), 2017–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, J., Liu, X., Wang, H., Zhang, W., Chan, D. C., & Shi, Y. (2012). Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proceedings of National Academy of Sciences of the United States of America, 109(18), 6975–80.

    Article  CAS  Google Scholar 

  50. Sedlak, E., & Musatov, A. (2017). Inner mechanism of protection of mitochondrial electron-transfer proteins against oxidative damage. Focus on hydrogen peroxide decomposition. Biochimie, 142, 152–7.

    Article  CAS  PubMed  Google Scholar 

  51. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., & Sheu, S. S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. The American Journal of Physiology Cell Physiology, 287(4), C817–33.

    Article  CAS  PubMed  Google Scholar 

  52. Cloonan, S. M., & Choi, A. M. (2016). Mitochondria in lung disease. The Journal of Clinical Investigation, 126(3), 809–20.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cloonan, S. M., Kim, K., Esteves, P., Trian, T., & Barnes, P. J. (2020). Mitochondrial dysfunction in lung ageing and disease. European Respiratory Review, 29, 157.

    Article  Google Scholar 

  54. Dadsena, S., Zollo, C., & Garcia-Saez, A. J. (2021). Mechanisms of mitochondrial cell death. Biochemical Society Transactions, 49(2), 663–74.

    Article  CAS  PubMed  Google Scholar 

  55. Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., & Amoscato, A. A., et al. (2005). Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chemical Biology, 1(4), 223–32.

    Article  CAS  PubMed  Google Scholar 

  56. Ye, C., Shen, Z., & Greenberg, M. L. (2016). Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function. Journal of Bioenergetics and Biomembranes, 48(2), 113–23.

    Article  CAS  PubMed  Google Scholar 

  57. Baile, M. G., Whited, K., & Claypool, S. M. (2013). Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. Molecular Biology of the Cell, 24(12), 2008–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scorrano, L. (2008). Caspase-8 goes cardiolipin: a new platform to provide mitochondria with microdomains of apoptotic signals? Journal of Cell Biology, 183(4), 579–81.

    Article  CAS  Google Scholar 

  59. Duncan, A. L. (2020). Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochemical Society Transactions, 48(3), 993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Song, C., Zhang, J., Qi, S., Liu, Z., Zhang, X., & Zheng, Y., et al. (2019). Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson’s diseases. Aging Cell, 18(3), e12941.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zou, C., Synan, M. J., Li, J., Xiong, S., Manni, M. L., & Liu, Y., et al. (2016). LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. Journal of Cell Science, 129(1), 51–64.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work made use of the instrumentation provided by the Core Facility of the University of Illinois at Chicago’s Research Resources Center.

Author contributions

Conceptualization—M.B., V.N., and B.K.; methodology—M.B., V.S., P.F.U., V.N., R.R., L.H., and S.S.; formal analysis—M.B., R.R., S.M., P.V.S., and V.N.; investigation—M.B., V.N., B.K.; resources—V.N., B.K., S.P.R., and S.M.D.; writing—M.B., V.N., and R.R.; writing (review and editing)—B.M., R.R., and V.N.; project administration—V.N.; funding acquisition—V.N.

Funding

This work was supported by National Institutes of Health grants HLBI P01HL126609, P01HL060678, R01HL127342 (to V.N.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanathan Natarajan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandela, M., Suryadevara, V., Fu, P. et al. Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochem Biophys 80, 203–216 (2022). https://doi.org/10.1007/s12013-021-01043-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01043-3

Keywords

Navigation