Skip to main content

Advertisement

Log in

Bioflavonoid (Hesperidin) Restrains Protein Oxidation and Advanced Glycation End Product Formation by Targeting AGEs and Glycolytic Enzymes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Alpha-amylase (α-amylase) not long ago has acquire recognition as a possible drug target for the management of diabetes. Here, we have investigated the binding and enzyme activity of α-amylase by hesperidin; a naturally occurring flavanone having wide therapeutic potential. Hesperidin exerted an inhibitory influence on α-amylase activity with an IC50 value of 16.6 µM. Hesperidin shows a significant binding toward α-amylase with a binding constant (Ka) of the order of 104 M−1. The evaluation of thermodynamic parameters (∆H and ∆S) suggested that van der Waals force and hydrogen bonding drive seemingly specific hesperidin-α-amylase complex formation. Glycation and oxidation studies were performed using human serum albumin (HSA) as ideal protein. Hesperidin inhibited fructosamine content ≈40% at 50 µM and inhibited advanced glycation end products (AGEs) formation by 71.2% at the same concentration. Moreover, significant recovery was evident in free –SH groups and carbonyl content of HSA. Additionally, molecular docking also entrenched in vitro observations and provided an insight into the important residues (Trp58, Gln63, His101, Glu233, Asp300, and His305) at the heart of hesperidin-α-amylase interaction. This study delineates mechanistic insight of hesperidin-α-amylase interaction and provides a platform for use of hesperidin to treat AGEs directed diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dubey, S., Ganeshpurkar, A., Ganeshpurkar, A., Bansal, D., & Dubey, N. (2017). Glycolytic enzyme inhibitory and antiglycation potential of rutin. Future Journal of Pharmaceutical Sciences, 3(2), 158–162

    Article  Google Scholar 

  2. Sabharwal, R., & Mahajan, A. (2020). Diabetes mellitus, dyslipidemia: Cause for acute myocardial infarction. JK Science, 22(1), 1–2

    Google Scholar 

  3. Asadipooya, K., & Uy, E. M. (2019). Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: Review of the literature. Journal of the Endocrine Society, 3(10), 1799–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Younus, H., & Anwar, S. (2016). Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. International Journal of Health Sciences, 10(2), 261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalousova, M., Skrha, J., & Zima, T. (2002). Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiological Research, 51(6), 597–604

    CAS  PubMed  Google Scholar 

  6. Adisakwattana, S., Sompong, W., Meeprom, A., Ngamukote, S., & Yibchok-anun, S. (2012). Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. International Journal of Molecular Sciences, 13(2), 1778–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prasad, C., Davis, K. E., Imrhan, V., Juma, S., & Vijayagopal, P. (2019). Advanced glycation end products and risks for chronic diseases: intervening through lifestyle modification. American Journal of Lifestyle Medicine, 13(4), 384–404

    Article  PubMed  Google Scholar 

  8. Kotowaroo, M. I., Mahomoodally, M. F., Gurib‐Fakim, A., & Subratty, A. H. (2006). Screening of traditional anti-diabetic medicinal plants of mauritius for possible α‐amylase inhibitory effects in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(3), 228–231

    Article  CAS  Google Scholar 

  9. Yao, Y., Sang, W., Zhou, M., & Ren, G. (2010). Antioxidant and α-glucosidase inhibitory activity of colored grains in China. Journal of Agricultural and Food Chemistry, 58(2), 770–774

    Article  CAS  PubMed  Google Scholar 

  10. Kim, Y.-M., Jeong, Y.-K., Wang, M.-H., Lee, W.-Y., & Rhee, H.-I. (2005). Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21(6), 756–761

    Article  CAS  PubMed  Google Scholar 

  11. Yousuf, M., Shamsi, A., Khan, P., Shahbaaz, M., AlAjmi, M. F., Hussain, A., & Hassan, M. (2020). Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. International Journal of Molecular Sciences, 21(10), 3526

    Article  CAS  PubMed Central  Google Scholar 

  12. Yousuf, M., Khan, P., Shamsi, A., Shahbaaz, M., Hasan, G. M., Haque, Q. M. R., Christoffels, A., Islam, A., & Hassan, M. I. (2020). (2020). Inhibiting CDK6 activity by Quercetin is an attractive strategy for cancer therapy. ACS Omega, 5(42), 27480–27491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anwar, S., Mohammad, T., Shamsi, A., Queen, A., Parveen, S., Luqman, S., & Asiri, A. M. (2020). Discovery of Hordenine as a potential inhibitor of pyruvate dehydrogenase kinase 3: Implication in lung cancer therapy. Biomedicines, 8(5), 119

    Article  CAS  PubMed Central  Google Scholar 

  14. Anwar, S., Shamsi, A., Shahbaaz, M., Queen, A., Khan, P., Hasan, G. M., & Ahmad, F. (2020). Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Scientific Reports, 10(1), 1–13

    Article  CAS  Google Scholar 

  15. Akiyama, S., Katsumata, S., Suzuki, K., Nakaya, Y., Ishimi, Y., & Uehara, M. (2009). Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Bioscience, Biotechnology, and Biochemistry, 73(12), 2779–2782

    Article  CAS  PubMed  Google Scholar 

  16. Gandhi, G. R., Vasconcelos, A. B. S., Wu, D.-T., Li, H.-B., Antony, P. J., Li, H., & Gan, R.-Y. (2020). Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients, 12(10), 2907

    Article  CAS  PubMed Central  Google Scholar 

  17. Huang, S., Tsai, S., Lin, J., Wu, C., & Yen, G. (2012). Cytoprotective effects of hesperetin and hesperidin against amyloid β‐induced impairment of glucose transport through downregulation of neuronal autophagy. Molecular Nutrition & Food Research, 56(4), 601–609

    Article  CAS  Google Scholar 

  18. Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytotherapy Research, 29(3), 323–331

    Article  CAS  PubMed  Google Scholar 

  19. Roohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sciences, 124, 64–74

    Article  CAS  PubMed  Google Scholar 

  20. Zanwar, A. A., Badole, S. L., Shende, P. S., Hegde, M. V., & Bodhankar, S. L. (2014). Cardiovascular effects of hesperidin: A flavanone glycoside. In: Ronald W, Victor P, Sherma Z (Eds.) Polyphenols in human health and disease (pp. 989–992). Elsevier

  21. Rangel-Huerta, O. D., Aguilera, C. M., Martin, M. V., Soto, M. J., Rico, M. C., Vallejo, F., & Mesa, M. D. (2015). Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. The Journal of Nutrition, 145(8), 1808–1816

    Article  CAS  PubMed  Google Scholar 

  22. Peterson, J. J., Beecher, G. R., Bhagwat, S. A., Dwyer, J. T., Gebhardt, S. E., Haytowitz, D. B., & Holden, J. M. (2006). Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. Journal of Food Composition and Analysis, 19, S74–S80.

    Article  CAS  Google Scholar 

  23. Nandakumar, N., & Balasubramanian, M. P. (2012). Hesperidin a citrus bioflavonoid modulates hepatic biotransformation enzymes and enhances intrinsic antioxidants in experimental breast cancer rats challenged with 7, 12-Dimethylbenz (a) anthracene. Journal of Experimental Therapeutics & Oncology, 9, 4

    Google Scholar 

  24. Dhanya, R., & Jayamurthy, P. (2020). In vitro evaluation of anti-diabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochemistry and Function, 38(4), 419–427

    Article  CAS  PubMed  Google Scholar 

  25. Li, D., Mitsuhashi, S., & Ubukata, M. (2012). Protective effects of hesperidin derivatives and their stereoisomers against advanced glycation end-products formation. Pharmaceutical Biology, 50(12), 1531–1535

    Article  CAS  PubMed  Google Scholar 

  26. Shamsi, A., Ahmed, A., Khan, M. S., Al Shahwan, M., Husain, F. M., & Bano, B. (2020). Understanding the binding between Rosmarinic acid and serum albumin: In vitro and in silico insight. Journal of Molecular Liquids, 311, 113348

    Article  CAS  Google Scholar 

  27. Shamsi, A., Anwar, S., Mohammad, T., Alajmi, M. F., Hussain, A., Rehman, M., & Hassan, M. (2020). MARK4 inhibited by AChE inhibitors, donepezil and rivastigmine tartrate: Insights into Alzheimer’s disease therapy. Biomolecules, 10(5), 789

    Article  CAS  PubMed Central  Google Scholar 

  28. Shamsi, A., Mohammad, T., Khan, M. S., Shahwan, M., Husain, F. M., Rehman, M., & Islam, A. (2019). Unraveling binding mechanism of Alzheimer’s drug rivastigmine tartrate with human transferrin: Molecular docking and multi-spectroscopic approach towards neurodegenerative diseases. Biomolecules, 9(9), 495

    Article  PubMed Central  CAS  Google Scholar 

  29. Khan, M.S., Qais, F. A., Rehman, M. T., Ismail, M. H., Alokail, M. S., Altwaijry, N. & & Alqhatani, R. (2020). Mechanistic inhibition of non-enzymaticglycation and aldose reductase activity by naringenin: Binding, enzyme kinetics and molecular docking analysis. International Journal of Biological Macromolecules, 159, 87–97.

    Article  CAS  PubMed  Google Scholar 

  30. Muthenna, P., Suryanarayana, P., Gunda, S. K., Petrash, J. M., & Reddy, G. B. (2009). Inhibition of aldose reductase by dietary antioxidant curcumin: mechanism of inhibition, specificity and significance. FEBS Letters, 583(22), 3637–3642

    Article  CAS  PubMed  Google Scholar 

  31. Ahmed, A., Shamsi, A., Khan, M. S., Husain, F. M., & Bano, B. (2018). Methylglyoxal induced glycation and aggregation of human serum albumin: biochemical and biophysical approach. International Journal of Biological Macromolecules, 113, 269–276

    Article  CAS  PubMed  Google Scholar 

  32. Giannoukakis, N. (2006). Drug evaluation: Ranirestat—an aldose reductase inhibitor for the potential treatment of diabetic complications. Current Opinion in Investigational Drugs (London, England: 2000), 7(10), 916–923

    CAS  Google Scholar 

  33. Shamsi, A., Shahwan, M., Husain, F. M., & Khan, M. S. (2019). Characterization of methylglyoxal induced advanced glycation end products and aggregates of human transferrin: Biophysical and microscopic insight. International Journal of Biological Macromolecules, 138, 718–724

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, R. N., Metcalf, P. A., & Baker, J. R. (1983). Fructosamine: A new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clinica Chimica Acta, 127(1), 87–95

    Article  CAS  Google Scholar 

  35. Ellman, G. L. (1958). A colorimetric method for determining low concentrations of mercaptans. Archives of Biochemistry and Biophysics, 74(2), 443–450

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, H., Wang, Y., Fei, Z., Wu, L., & Zhou, Q. (2008). Characterization of the interaction between Fe (III)-2, 9, 16, 23-tetracarboxyphthalocyanine and blood proteins. Dyes and Pigments, 78(3), 239–247

    Article  CAS  Google Scholar 

  37. Zhang, G., Que, Q., Pan, J., & Guo, J. (2008). Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. Journal of Molecular Structure, 881(1–3), 132–138

    Article  CAS  Google Scholar 

  38. Bolli, A., Marino, M., Rimbach, G., Fanali, G., Fasano, M., & Ascenzi, P. (2010). Flavonoid binding to human serum albumin. Biochemical and Biophysical Research Communications, 398(3), 444–449

    Article  CAS  PubMed  Google Scholar 

  39. Shamsi, A., Mohammad, T., Anwar, S., Alajmi, M. F., Hussain, A., Hassan, M. I., & Islam, A. (2020). Probing the interaction of Rivastigmine Tartrate, an important Alzheimer’s drug, with serum albumin: Attempting treatment of Alzheimer’s disease. International Journal of Biological Macromolecules, 148, 533–542

    Article  CAS  PubMed  Google Scholar 

  40. Rehman, M. T., Shamsi, H., & Khan, A. U. (2014). Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches. Molecular Pharmaceutics, 11(6), 1785–1797

    Article  CAS  PubMed  Google Scholar 

  41. Shi, S., Zhang, Y., Chen, X., & Peng, M. (2011). Investigation of flavonoids bearing different substituents on ring C and their Cu2+ complex binding with bovine serum albumin: structure–affinity relationship aspects. Journal of Agricultural and Food Chemistry, 59(19), 10761–10769

    Article  CAS  PubMed  Google Scholar 

  42. Xiaqing, W. U., Huafang, D., et al. (2018). Exploring inhibitory mechanism of gallocatechin gallate on a-amylase and a-glucosidase relevant to postprandial hyperglycemia. Journal of Functional Foods, 48, 200–209

    Article  CAS  Google Scholar 

  43. Lijun, S., Weiqi, C., et al. (2016). Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chemistry, 208, 51–60

    Article  CAS  Google Scholar 

  44. Alam, M. M., Abul Qais, F., Ahmad, I., Alam, P., Hasan Khan, R., & Naseem, I. (2018). Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin. Journal of Biomolecular Structure and Dynamics, 36(3), 795–809

    Article  CAS  PubMed  Google Scholar 

  45. Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y., Li, Y., Dong, L., Li, J., He, W., Chen, X., & Hu, Z. (2008). Investigation of the interaction between naringin and human serum albumin. Journal of Molecular Structure, 875(1–3), 1–8

    CAS  Google Scholar 

  47. Wang, Y. Q., Zhang, H. M., Zhang, G. C., Tao, W. H., & Tang, S. H. (2007). Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study. Journal of Luminescence, 126(1), 211–218

    Article  CAS  Google Scholar 

  48. Tu, B., Wang, Y., Mi, R., Ouyang, Y., & Hu, Y.-J. (2015). Evaluation of the interaction between naringenin and human serum albumin: Insights from fluorescence spectroscopy, electrochemical measurement and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 536–543

    Article  CAS  Google Scholar 

  49. Förster, T. (1967). Mechanisms of energy transfer. In: MArcel F, Elmer H.S. (Eds.) Comprehensive biochemistry (Vol. 22, pp. 61–80). Elsevier

  50. Jiang, C.-Q., Gao, M.-X., & Meng, X.-Z. (2003). Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(7), 1605–1610

    Article  CAS  Google Scholar 

  51. Siddiqui, G. A., Siddiqi, M. K., Khan, R. H., & Naeem, A. (2018). Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 203, 40–47

    Article  CAS  Google Scholar 

  52. Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Reviews in Medicinal Chemistry, 10(4), 315–331

    Article  CAS  PubMed  Google Scholar 

  53. Liu, M., Hu, B., Zhang, H., Zhang, Y., Wang, L., Qian, H., & Xiguang, Q. (2017). Inhibition study of red rice polyphenols on pancreatica-amylaseactivity by kinetic analysis and molecular docking. Journal of Cereal Science, 76, 186–192

    Article  CAS  Google Scholar 

  54. Sahnoun, M., Trabelsi, S., & Bejar, S. (2017). Citrus flavonoids collectively dominate the α-amylase and α-glucosidase inhibitions. Biologia, 72, 764–773

    Article  CAS  Google Scholar 

  55. Zhang, B. W., Li, X., Sun, W. L., Xing, Y., Xiu, Z. L., Zhuang, C. L., & Dong, Y. S. (2017). Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose. J Agric Food Chem, 65(38), 8319–8330

    Article  CAS  PubMed  Google Scholar 

  56. Goh, S.-Y., & Cooper, M. E. (2008). The role of advanced glycation end products in progression and complications of diabetes. The Journal of Clinical Endocrinology & Metabolism, 93(4), 1143–1152

    Article  CAS  Google Scholar 

  57. Fernandes, A. C. F., Santana, A. L., Martins, I. M., Moreira, D. K. T., Macedo, J. A., & Macedo, G. A. (2020). Anti-glycation effect and the α-amylase, lipase, and α-glycosidase inhibition properties of a polyphenolic fraction derived from citrus wastes. Preparative Biochemistry & Biotechnology, 50(8), 1–9.

    Article  CAS  Google Scholar 

  58. Aćimović, J. M., Stanimirović, B. D., & Mandić, L. M. (2009). The role of the thiol group in protein modification with methylglyoxal. Journal of the Serbian Chemical Society, 74(8–9), 867–883

    Article  CAS  Google Scholar 

  59. Nita, M., Grzybowski, A. (2016). The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Medicine and Cellular Longevity, 2016, 23

  60. Beal, M. F. (2002). Oxidatively modified proteins in aging and disease. Free Radical Biology and Medicine, 32(9), 797–803

    Article  CAS  PubMed  Google Scholar 

  61. Balu, M., Sangeetha, P., Murali, G., & Panneerselvam, C. (2005). Age-related oxidative protein damages in central nervous system of rats: modulatory role of grape seed extract. International Journal of Developmental Neuroscience, 23(6), 501–507

    Article  CAS  PubMed  Google Scholar 

  62. Mahmoud, A. M., Mohammed, H. M., Khadrawy, S. M., & Galaly, S. R. (2017). Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation. Chemico-Biological Interactions, 277, 146–158

    Article  CAS  PubMed  Google Scholar 

  63. Bashir, S., Shamsi, A., Ahmad, F., Hassan, M. I., Kamal, M. A. & & Islam, A. (2020). Biophysical elucidation of fibrillation inhibition by sugar osmolytes in α-lactalbumin: multispectroscopic and molecular docking approaches. ACS Omega, 5(41), 26871–26882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at the KSU for funding this work through research group project number RGP-215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Shahnawaz Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Rehman, M.T., Ismael, M.A. et al. Bioflavonoid (Hesperidin) Restrains Protein Oxidation and Advanced Glycation End Product Formation by Targeting AGEs and Glycolytic Enzymes. Cell Biochem Biophys 79, 833–844 (2021). https://doi.org/10.1007/s12013-021-00997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00997-8

Keywords

Navigation