Skip to main content
Log in

Attenuation of cardiac ischemia-reperfusion injury by sodium thiosulfate is partially dependent on the effect of cystathione beta synthase in the myocardium

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Our early studies have shown that sodium thiosulfate (STS) treatment attenuated the ischemia-reperfusion (IR)-induced injury in an isolated rat heart model by decreasing apoptosis, oxidative stress, and preserving mitochondrial function. Hydrogen sulfide, the precursor molecule is reported to have similar efficacy. This study aims to investigate the role of endogenous hydrogen sulfide in STS-mediated cardioprotection against IR in an isolated rat heart model. d, l-propargylglycine (PAG), an inhibitor of cystathionine γ-lyase was used as endogenous H2S blocker. In addition, we used the hypoxia-reoxygenation (HR) model to study the impact of STS in cardiomyocytes (H9C2) and fibroblast (3T3) cells. STS treatment to animal and cells prior to IR or HR decreased cell injury. The sensitivity of H9C2 and 3T3 cells towards HR (6 h hypoxia followed by 12 h reoxygenation) challenge varies, where, 3T3 cells exhibited higher cell death (54%). Cells treated with PAG prior to STS abrogate the protective effect in 3T3 (cell viability 61%) but not in H9C2 (cell viability 82%). Further evaluation in rat heart model showed partial recovery (46% RPP) of heart from those hearts pretreated with PAG prior to STS condition. In conclusion, we demonstrated that STS-mediated cardioprotection to IR-challenged rat heart is not fully dependent on endogenous H2S level and this dependency may be linked to higher fibroblast content in rat heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., & Deo, R., et al. (2017). Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation, 135, e146–e603.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prasad, A., Stone, G. W., Holmes, D. R., & Gersh, B. (2009). Reperfusion injury, microvascular dysfunction, and cardioprotection: the “dark side” of reperfusion. Circulation, 120, 2105–2112.

    Article  PubMed  Google Scholar 

  3. Turer, A. T., & Hill, J. A. (2010). Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. The American Journal of Cardiology, 106, 360–368.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neri, M., & Riezzo, I. (2017). Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators of Inflammation, 2017, 7018393.

  5. Dirksen, M. T., Laarman, G. J., Simoons, M. L., & Duncker DJGM (2007). Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovascular Research, 74, 343–355.

    Article  CAS  PubMed  Google Scholar 

  6. Ravindran, S., Boovarahan, S. R., Shanmugam, K., Vedarathinam, R. C., & Kurian, G. A. (2017). Sodium thiosulfate preconditioning ameliorates ischemia/reperfusion injury in rat hearts via reduction of oxidative stress and apoptosis. Cardiovascular Drugs and Therapy, 31, 511–524.

    Article  CAS  PubMed  Google Scholar 

  7. Hildebrandt, T. M., & Grieshaber, M. K. (2008). Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. The FEBS Journal, 275, 3352–3361.

    Article  CAS  PubMed  Google Scholar 

  8. Tanizawa, K. (2011). Production of H2S by 3-mercaptopyruvate sulphurtransferase. The Journal of Biochemistry, 149, 357–359.

    Article  CAS  PubMed  Google Scholar 

  9. Sen, U., Vacek, T. P., Hughes, W. M., Kumar, M., Moshal, K. S., & Tyagi, N., et al. (2008). Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology, 82, 201–213.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Q., Shang, M., Zhang, M., Wang, Y., Chen, Y., & Wu, Y., et al. (2016). Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells promote apoptosis and oxidative stress in H9c2 cardiomyocytes. BMC cell biology, 17, 25–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feoktistova, M., Geserick, P., & Leverkus, M. (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harbour Protocols. 2016, pdb.prot087379. https://doi.org/10.1101/pdb.prot087379.

  12. Kasibhatla, S., Amarante-Mendes, G. P., Finucane, D., Brunner, T., Bossy-Wetzel, E., & Green, D. R. (2006). Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protocols, 2006, 2006.

    Google Scholar 

  13. Beebee, T. J., & Carty, D. S. (1983). A study of lactate dehydrogenase levels and turnover rates during postnatal development in the rat. Biochimica et Biophysica Acta, 757, 209–218.

    Article  CAS  PubMed  Google Scholar 

  14. Tanzer, M. L., & Gilvarg, C. (1959). Creatine and creatine kinase measurement. Journal of Biological Chemistry, 234, 3201–3204.

    CAS  PubMed  Google Scholar 

  15. Ytrehus, K., Liu, Y., Tsuchida, A., Miura, T., Liu, G. S., & Yang, X. M., et al. (1994). Rat and rabbit heart infarction: effects of anesthesia, perfusate, risk zone, and method of infarct sizing. American Journal of Physiology, 267, H2383–H2390.

    CAS  PubMed  Google Scholar 

  16. Sharma, R., Singh Rathore, S., Sharma, P., & Sharma, A. (2009). Estimation of thiosulphate using sodium nitroprusside by a newer photochemical method. Journal of Chemical and Pharmaceutical Research, 1, 321–328.

    CAS  Google Scholar 

  17. Ang, A. D., Konigstorfer, A., Giles, G. I., & Bhatia, M. (2012). Measuring free tissue sulfide. Advances in Biological Chemistry, 02No.04, 6.

    Google Scholar 

  18. Palmer, J. W., Tandler, B., & Hoppel, C. L. (1977). Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. Journal of Biological Chemistry, 252, 8731–8739.

    CAS  PubMed  Google Scholar 

  19. Fraga, C. G., Leibovitz, B. E., & Tappel, A. L. (1988). Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 4, 155–161.

    Article  CAS  PubMed  Google Scholar 

  20. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.

    Article  CAS  PubMed  Google Scholar 

  21. Beutler, E., & Kelly, B. M. (1963). The effect of sodium nitrite on red cell GSH. Experientia, 19, 96–97.

    Article  CAS  PubMed  Google Scholar 

  22. Kuntz, A. N., Davioud-Charvet, E., Sayed, A. A., Califf, L. L., Dessolin, J., & Arner, E. S., et al. (2007). Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Medicine, 4, e206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Article  CAS  PubMed  Google Scholar 

  24. Nandi, A., & Chatterjee, I. (1988). Assay of superoxide dismutase activity in animal tissues. Journal of Biosciences, 13, 305–315.

    Article  CAS  Google Scholar 

  25. Frazier, A. E., & Thorburn, D. R. (2012). Biochemical Analyses of the Electron Transport Chain Complexes by Spectrophotometry. In: Wong, L. J. (ed.), Mitochondrial Disorders. Methods in Molecular Biology (Methods and Protocols), Vol 837. Humana Press.

  26. Banu, S. A., Ravindran, S., & Kurian, G. A. (2016). Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury. Cell Stress and Chaperones, 21, 571–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, C.-Y., Hwang, J.-H., Lee, Y.-S., & Cho, K.-S. (1995). Purification and characterization of mouse liver rhodanese. Journal of Biochemistry and Molecular Biology, 28, 170–176.

    CAS  Google Scholar 

  28. Zhou, P., & Pu, W. T. (2016). Recounting cardiac cellular composition. Circulation Research, 118, 368–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ravindran, S., & Kurian, G. A. (2018). Effect of sodium thiosulfate postconditioning on ischemia-reperfusion injury induced mitochondrial dysfunction in rat heart. Journal of Cardiovascular Translational Research, 11, 246–258.

    Article  PubMed  Google Scholar 

  30. Ravindran, S., Jahir Hussain, S., Boovarahan, S. R., & Kurian, G. A. (2017). Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress. Chemico-Biological Interactions, 274, 24–34.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, G., Wu, L., Bryan, S., Khaper, N., Mani, S., & Wang, R. (2010). Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovascular Research, 86, 487–495.

    Article  CAS  PubMed  Google Scholar 

  32. van den Born, J. C., Mencke, R., Conroy, S., Zeebregts, C. J., van Goor, H., & Hillebrands, J. L. (2016). Cystathionine γ-lyase is expressed in human atherosclerotic plaque microvessels and is involved in micro-angiogenesis. Scientific Reports, 6, 34608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Indian Council for Medical Research (ICMR), Government of India, New Delhi, for supporting this research through grant-in-aid (No. 5/4/1-14/12-NCD-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino A. Kurian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics

The study protocol involving experimentation on animals was approved by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), India, with prior approval of the Institutional Animal Ethical Committee (IAEC, SASTRA University, No.: 229/SASTRA/IAEC/RPP).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, S., Boovarahan, S.R., Rengaraju, J. et al. Attenuation of cardiac ischemia-reperfusion injury by sodium thiosulfate is partially dependent on the effect of cystathione beta synthase in the myocardium. Cell Biochem Biophys 77, 261–272 (2019). https://doi.org/10.1007/s12013-019-00871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00871-8

Navigation